2.已知z=1+i是方程ax2+bx+1=0(a,b∈R)的一個根,則( 。
A.a=$\frac{1}{2}$,b=1B.a=-$\frac{1}{2}$,b=-1C.a=-$\frac{1}{2}$,b=1D.a=$\frac{1}{2}$,b=-1

分析 由題意知1-i是方程ax2+bx+1=0(a,b∈R)的另一個根,從而利用韋達(dá)定理求解.

解答 解:∵z=1+i是方程ax2+bx+1=0(a,b∈R)的一個根,
∴1-i是方程ax2+bx+1=0(a,b∈R)的另一個根,
∴1+i+1-i=-$\frac{a}$,
(1+i)(1-i)=$\frac{1}{a}$,
解得,a=$\frac{1}{2}$,b=-1;
故選:D.

點評 本題考查了二次方程的根與系數(shù)的關(guān)系,同時考查了實系數(shù)方程的性質(zhì).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知(x-y)(x+y)5的展開式中x2y4的系數(shù)為m,則${∫}_{1}^{2}$(xm+$\frac{1}{x}$)dx=ln2+$\frac{15}{64}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.${({1+\frac{1}{2}x})^{15}}$的展開式中系數(shù)最大的項是( 。
A.第4項B.第5項C.第6項D.第7項

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{x-y+1≥0}\\{3x-y-3≤0}\\{x≥0}\\{y≥0}\end{array}\right.$,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為6,則a2+b2的最小值為(  )
A.$\frac{12}{17}$B.$\frac{36}{13}$C.$\frac{6\sqrt{13}}{13}$D.$\frac{7\sqrt{13}}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x≥0時,f(x)=x3+ax+1,y=f(x)的圖象在點(-1,f(-1))處的切線過點(1,-7),則a=-13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.不等式k-4x+x2>0的解集為R,則k的范圍是k>4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知兩點A(3,-4)、B(5,2),直線經(jīng)過線段AB的中點M,傾斜角的正弦和余弦是方程25x2+5x-12=0的兩個根,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{2x-y-2≤0}\\{x-y+2≥0}\\{x≥0,y≥0}\end{array}\right.$,函數(shù)z=ax+by(a>0,b>0)的最大值是12,則4a2+9b2的最小值為( 。
A.8B.18C.36D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.過直線l:x+y=2上任意點P向圓C:x2+y2=1作兩條切線,切點分別為A,B,線段AB的中點為Q,則點Q到直線l的距離的取值范圍為( 。
A.[$\frac{1}{2},\sqrt{2}$)B.[$\frac{1}{2},\sqrt{2}$]C.[$\frac{\sqrt{2}}{2},\sqrt{2}$)D.[$\frac{\sqrt{2}}{2},\sqrt{2}$]

查看答案和解析>>

同步練習(xí)冊答案