如圖,三棱錐P-ABC中,D、E分別是△PAB、△PBC的重心.求證:DE∥平面ABC.
考點(diǎn):直線與平面平行的判定
專題:證明題,空間位置關(guān)系與距離
分析:連接PD,PE分別與AB,BC交于M,N,則M,N是AB,BC的中點(diǎn),利用D、E分別是△PAB、△PBC的重心,可得DE∥MN,根據(jù)直線與平面平行的判定定理可得結(jié)論.
解答: 證明:連接PD,PE分別與AB,BC交于M,N,則M,N是AB,BC的中點(diǎn),
∵D、E分別是△PAB、△PBC的重心,
∴DE∥MN,
∵DE?平面ABC,MN?平面ABC,
∴DE∥平面ABC.
點(diǎn)評(píng):本題考查直線與平面平行的判定,考查學(xué)生分析解決問題的能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖的程序框圖,若輸入的x∈[0,1],則輸出的x的范圍是(  )
A、[1,3]
B、[3,7]
C、[7,15]
D、[15,31]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面向量
α
β
滿足|
α
|=|
β
|=1,且
α
β
-
α
的夾角為120°,則|(1-t)
α
+2t
β
|(t∈R)的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)M(x0,y0)為拋物線C:y=
1
8
x2
上一點(diǎn),F(xiàn)為拋物線C的焦點(diǎn),以F為圓心、|FM|為半徑的圓和拋物線C的準(zhǔn)線相交,則y0的取值范圍是( 。
A、(2,+∞)
B、[0,2]
C、(0,
1
32
D、(
1
32
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,∠BAC=90°,AB=2,AC=6,點(diǎn)D在線段BB1上,且BD=
1
3
BB1
,A1C∩AC1=E.
(1)求證:直線DE與平面ABC不平行;
(2)設(shè)平面ADC1與平面ABC所成的銳二面角為θ,若cosθ=
7
7
,求AA1的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓柱形容器內(nèi)盛有高度為4cm的水,若放入三個(gè)相同的鐵球(球的半徑與圓柱的底面半徑相同)后,水恰好淹沒最上面的球(如圖),則球的表面積是( 。
A、2πB、4πC、8πD、16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A是棱長(zhǎng)為a的正方體的一個(gè)頂點(diǎn),過從此頂點(diǎn)出發(fā)的三條棱的中點(diǎn)作截面,對(duì)正方體的所有頂點(diǎn)都如此操作,所得的各截面與正方體各面共同圍成一個(gè)多面體,則關(guān)于此多面體有以下結(jié)論:
①有12個(gè)頂點(diǎn);②有24條棱;③有12個(gè)面;④表面積為3a2;⑤體積為
5
6
a3
其中正確的結(jié)論是(  )
A、①③④B、①②⑤
C、②③⑤D、②④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,甲、乙、丙是三個(gè)空間立體圖形的三視圖,甲、乙、丙對(duì)應(yīng)的標(biāo)號(hào)正確的是( 。
①長(zhǎng)方體  ②圓錐    ③三棱錐    ④圓柱.
A、③②④B、②①③
C、①②③D、④③②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知E為不等式組
x+y≥2
x+2y≤4
y≥1
,表示區(qū)域內(nèi)的一點(diǎn),過點(diǎn)E的直線l與圓M:(x-1)2+y2=9相交于A,C兩點(diǎn),過點(diǎn)E與l垂直的直線交圓M于B、D兩點(diǎn),當(dāng)AC取最小值時(shí),四邊形ABCD的面積為(  )
A、12
B、6
7
C、12
2
D、4
5

查看答案和解析>>

同步練習(xí)冊(cè)答案