9.已知直線y=k(x+2)與拋物線y2=8x交于A、B兩點,F(xiàn)為拋物線的焦點,則直線FA與直線FB的斜率之和等于(  )
A.-4B.4C.0D.2

分析 求得拋物線的焦點F(2,0),設A(x1,y1),B(x2,y2).聯(lián)立直線方程和拋物線的方程,消去y,可得x的方程,運用韋達定理,由直線的斜率公式,可得直線FA與直線FB的斜率之和,化簡整理代入計算即可得到所求和.

解答 解:如圖所示拋物線y2=8x的焦點為F(2,0),
設A(x1,y1),B(x2,y2).
聯(lián)立$\left\{\begin{array}{l}{y=k(x+2)}\\{{y}^{2}=8x}\end{array}\right.$,化為k2x2+(4k2-8)x+4k2=0,(k≠0).
由于△>0,
可得x1+x2=$\frac{8-4{k}^{2}}{{k}^{2}}$,x1x2=4.
則直線FA與直線FB的斜率之和為$\frac{{y}_{1}}{{x}_{1}-2}$+$\frac{{y}_{2}}{{x}_{2}-2}$=$\frac{k({x}_{1}+2)({x}_{2}-2)+k({x}_{2}+2)({x}_{1}-2)}{({x}_{1}-2)({x}_{2}-2)}$=$\frac{k(2{x}_{1}{x}_{2}-8)}{({x}_{1}-2)({x}_{2}-2)}$=0,
故直線FA與直線FB的斜率之和為0,
故選:C.

點評 本題考查了直線與拋物線相交問題轉(zhuǎn)化為方程聯(lián)立可得根與系數(shù)的關(guān)系、斜率計算公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

19.計算:
(1)f(x)=$\frac{lnx}{e^x}$,求f′(x)
(2)已知復數(shù)z滿足z=$\frac{-3+i}{1-i}$,求|z|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知邊長為3的正△ABC的三個頂點都在球O的表面上,且球心O到平面ABC的距離為1,則球O的表面積為16π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學名著的,書中有如下問題:“今有圓堡瑽,周四丈八尺,高一丈一尺.問積幾何?答曰:二千一百一十二尺.術(shù)曰:周自相乘,以高乘之,十二而一”.這里所說的圓堡瑽就是圓柱體,它的體積為“周自相乘,以高乘之,十二而一.”就是說:圓堡瑽(圓柱體)的體積V=$\frac{1}{12}$×(底面的圓周長的平方×高),則該問題中圓周率π的取值為3(注:一丈等于十尺).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知復數(shù)(1-i)z=2+3i(i為虛數(shù)單位),則z的虛部為( 。
A.$\frac{5}{2}$B.$\frac{5}{2}$iC.-$\frac{5}{2}$iD.-$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.南北朝時期的數(shù)學古籍《張邱建算經(jīng)》有如下一道題:“今有十等人,每等一人,宮賜金以等次差(即等差)降之,上三人,得金四斤,持出;下四人后入得三斤,持出;中間三人未到者,亦依等次更給.問:每等人比下等人多得幾斤?”( 。
A.$\frac{4}{39}$B.$\frac{7}{78}$C.$\frac{7}{76}$D.$\frac{5}{81}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.函數(shù)f(x)=Asin(?x+φ)(A>0,?>0,|φ|<$\frac{π}{2}$)滿足f(-1)=0,則(  )
A.f(x-1)一定是偶函數(shù)B.f(x-1)一定是奇函數(shù)
C.f(x+1)一定是偶函數(shù)D.f(x+1)一定是奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知離心率為$\frac{1}{2}$的橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1、F2,A是橢圓C的左頂點,且滿足|AF1|+|AF2|=4.
(1)求橢圓C的標準方程;
(2)若斜率為k的直線交橢圓C于點M,N兩點(異于A點),且滿足AM⊥AN,問直線MN是否恒過定點?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知棱錐S-ABC中,SA=BC=$\sqrt{13}$,SB=AC=$\sqrt{5}$,SC=AB=$\sqrt{10}$,則該三棱錐的外接球表面積為(  )
A.64πB.16πC.14πD.

查看答案和解析>>

同步練習冊答案