分析 (Ⅰ)由Sn=3(Sn-1-3),Sn+1=3(Sn-3),相減可得an+1=3an.利用等比數(shù)列的通項(xiàng)公式即可得出.
(Ⅱ)利用等比數(shù)列的前n項(xiàng)和公式可得Sn,變形即可得出.
(Ⅲ)由(Ⅰ)可知bn=-2log3an+20=-2n+18,利用等差數(shù)列的前n項(xiàng)和公式,二次函數(shù)的單調(diào)性即可得出.
解答 解:(Ⅰ)∵Sn=3(Sn-1-3),Sn+1=3(Sn-3),
∴an+1=3an.
故{an}是公比為3,首項(xiàng)為9的等比數(shù)列,${a_n}={3^{n+1}}$,
(Ⅱ)∵${a_n}=9•{3^{n-1}}$,
∴${S_n}=\frac{{9(1-{3^n})}}{1-3}=-\frac{9}{2}+\frac{9}{2}•{3^n}$,
∴${S_n}+\frac{9}{2}=\frac{9}{2}•{3^n}=\frac{27}{2}•{3^{n-1}}$,${S_1}+\frac{9}{2}=\frac{9}{2}•3=\frac{27}{2},\;\;\frac{{{S_{n+1}}+\frac{9}{2}}}{{{S_n}+\frac{9}{2}}}=\frac{{\frac{27}{2}{3^n}}}{{\frac{27}{2}{3^{n-1}}}}=3$.
故數(shù)列$\left\{{{S_n}+\frac{9}{2}}\right\}$是$\frac{27}{2}$為首項(xiàng),公比為3的等比數(shù)列.
(Ⅲ)由(Ⅰ)可知bn=-2log3an+20=-2n+18,
∴{bn}是公差為-2.首項(xiàng)為16的等差數(shù)列.
∴${T_n}=-{n^2}+17n$,
∵b8>0,b9=0,b10<0,
∴T8或T9最大,最大值為72.
點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、二次函數(shù)的單調(diào)性、遞推關(guān)系的應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-1≤x≤3} | B. | {-3,-1,1,3,5} | C. | {-1,1,3} | D. | {-1,1,3,5} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 6 | C. | 8 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=e${\;}^{1-{x}^{2}}$ | B. | f(x)=e${\;}^{{x}^{2}-1}$ | C. | f(x)=e${\;}^{{x}^{2}}$-1 | D. | f(x)=ln(x2-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com