4.如圖,在平面直角坐標(biāo)系中,|$\overrightarrow{OA}$|=2|$\overrightarrow{AB}$|=2,∠OAB=$\frac{2π}{3}$,$\overrightarrow{BC}$=(-1,$\sqrt{3}$).
(1)求點(diǎn)B,C的坐標(biāo);
(2)求證:四邊形OABC為等腰梯形.

分析 (1)平面直角坐標(biāo)系中,先寫出點(diǎn)A的坐標(biāo),再求出點(diǎn)B的坐標(biāo),由向量$\overrightarrow{BC}$求出點(diǎn)C的坐標(biāo);
(2)由向量$\overrightarrow{AB}$與$\overrightarrow{OC}$共線且不等,得出四邊形OABC是梯形,再由|$\overrightarrow{OA}$|=|$\overrightarrow{BC}$|,得出梯形OABC是等腰梯形.

解答 解:(1)平面直角坐標(biāo)系中,|$\overrightarrow{OA}$|=2|$\overrightarrow{AB}$|=2,
∴A(2,0),
又∠OAB=$\frac{2π}{3}$,設(shè)點(diǎn)B(x,y),
則x=2+cos(π-$\frac{2π}{3}$)=2+$\frac{1}{2}$=$\frac{5}{2}$,
y=sin(π-$\frac{2π}{3}$)=$\frac{\sqrt{3}}{2}$,
∴點(diǎn)B($\frac{5}{2}$,$\frac{\sqrt{3}}{2}$);
又$\overrightarrow{BC}$=(-1,$\sqrt{3}$),
∴點(diǎn)C的坐標(biāo)為($\frac{5}{2}$-1,$\frac{\sqrt{3}}{2}$+$\sqrt{3}$),即($\frac{3}{2}$,$\frac{3\sqrt{3}}{2}$);
(2)證明:∵$\overrightarrow{AB}$=($\frac{5}{2}$-2,$\frac{\sqrt{3}}{2}$-0)=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),
$\overrightarrow{OC}$=($\frac{3}{2}$,$\frac{3}{2}$$\sqrt{3}$),
∴$\overrightarrow{AB}$=$\frac{1}{3}$$\overrightarrow{OC}$,
∴AB∥OC,四邊形OABC是梯形;
又|$\overrightarrow{OA}$|=|$\overrightarrow{BC}$|=2,
∴梯形OABC是等腰梯形.

點(diǎn)評(píng) 本題考查了利用平面向量的坐標(biāo)表示與運(yùn)算證明四邊形是等腰梯形的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知圓的方程為x2+y2-2y-4=0,過點(diǎn)A(2,1)的直線被圓所截,則截得的最短弦的長度為( 。
A.$\frac{3}{2}$B.2C.$\frac{{3\sqrt{2}}}{2}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知直線l1:x-3y-2=0與直線l2:2x+y-4=0相交于點(diǎn)C,
(1)求以C為圓心,半徑為1的圓C的方程;
(2)在(1)的條件下,過點(diǎn)M(1.3)的直線1與圓C相切,求直線1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在正方體ABCD-A1B1C1D1中,異面直線A1B和CC1所成角的大小是45°,異面直線A1B和B1C1所成角的大小是90°,異面直線A1B和AC所成角的大小是60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=ax2+bx+1(a≠0)過點(diǎn)(-1,0),其圖象恒在直線y=x的上方且與此直線無交點(diǎn).
(I)求實(shí)數(shù)a的取值范圍;
(Ⅱ)若f(x)在[-2,0]上的最小值為-$\frac{1}{8}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若函數(shù)f(x)在點(diǎn)A(1,-1)處的導(dǎo)數(shù)為-2,則函數(shù)在點(diǎn)A處的切線方程為2x+y-1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)的定義域?yàn)椋?,+∞),且滿足f(4)=1,對(duì)任意x1、x2∈(0,+∞)都有f(x1•x2)=f(x1)+f(x2),當(dāng)x∈(0,1)時(shí),f(x)<0.
(1)證明函數(shù)f(x)在(0,+∞)上是增函數(shù);
(2)解不等式f(3x+1)+f(2x-6)≤3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列函數(shù)中,當(dāng)自變量x變得很大時(shí),隨x的增大速度增大得最快的是( 。
A.y=$\frac{1}{100}$exB.y=100lnxC.y=x100D.y=100•2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.把函數(shù)$f(x)=sin({2x+\frac{π}{3}})$的圖象向右平移φ個(gè)單位,所得的圖象正好關(guān)于y軸對(duì)稱,則φ的最小正值為$\frac{5π}{12}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案