19.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,橢圓的左、右焦點(diǎn)分別是F1,F(xiàn)2,且|F1F2|=2.
(Ⅰ)求橢圓C的方程;
(Ⅱ)P為橢圓上一點(diǎn),PF1與y軸相交于Q,且$\overrightarrow{F_1P}$=2$\overrightarrow{F_1Q}$.若PF1與橢圓相交于另一點(diǎn)R,求|PR|的長.

分析 (Ⅰ)運(yùn)用離心率公式和a,b,c的關(guān)系,解方程可得a,b,進(jìn)而得到橢圓方程;
(Ⅱ)由$\overrightarrow{F_1P}$=2$\overrightarrow{F_1Q}$,知Q為F1P的中點(diǎn),可設(shè)Q(0,y),由F1(-1,0),則P(1,2y),代入橢圓方程,求得P的坐標(biāo),求出直線PF1的方程,代入橢圓方程,運(yùn)用韋達(dá)定理和弦長公式,計(jì)算即可得到所求值.

解答 解:(Ⅰ)由已知條件得$\frac{c}{a}$=$\frac{1}{2}$,2c=2,
∴c=1,a=2,∴b=$\sqrt{3}$.
∴橢圓C的方程為$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1;                      
(Ⅱ)由$\overrightarrow{F_1P}$=2$\overrightarrow{F_1Q}$,知Q為F1P的中點(diǎn),
可設(shè)Q(0,y),由F1(-1,0),則P(1,2y),
又P滿足橢圓的方程,代入求得y=±$\frac{3}{4}$,可取P(1,$\frac{3}{2}$),
可得直線PF1的方程為y=$\frac{3}{4}$(x+1),代入橢圓方程,
可得7x2+6x-13=0,
設(shè)P(x1,y1),R(x2,y2),
則x1+x2=-$\frac{6}{7}$,x1x2=-$\frac{13}{7}$.
由弦長公式可得|PR|=$\sqrt{1+\frac{9}{16}}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$
=$\frac{5}{4}$•$\sqrt{\frac{36}{49}+\frac{52}{7}}$=$\frac{25}{7}$.

點(diǎn)評 本題考查橢圓的方程的求法,注意運(yùn)用離心率公式,考查弦長的求法,注意聯(lián)立直線方程和橢圓方程,運(yùn)用韋達(dá)定理和弦長公式,同時(shí)考查向量共線定理的運(yùn)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知點(diǎn)M是橢圓$\frac{{y}^{2}}{25}+\frac{{x}^{2}}{9}$=1上一點(diǎn),F(xiàn)1,F(xiàn)2為橢圓的焦點(diǎn),且△F1MF2的面積等于8,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知$\overrightarrow{a}$=($\sqrt{3}$sinx,cosx),$\overrightarrow$=(sinx,sinx),設(shè)函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$-$\frac{\sqrt{3}}{2}$.
(1)寫出函數(shù)f(x)的周期,并求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)求f(x)在區(qū)間[π,$\frac{3π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若α,β為銳角,$cos(\frac{π}{4}+α)=\frac{1}{3},cos(\frac{π}{4}+\frac{β}{2})=\frac{{\sqrt{3}}}{3}$,則$cos(α-\frac{β}{2})$=( 。
A.$\frac{{\sqrt{3}}}{3}$B.$-\frac{{\sqrt{3}}}{3}$C.$-\frac{{\sqrt{6}}}{9}$D.$\frac{{5\sqrt{3}}}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.為振興蘇區(qū)發(fā)展,贛州市2016年計(jì)劃投入專項(xiàng)資金加強(qiáng)紅色文化基礎(chǔ)設(shè)施改造.據(jù)調(diào)查,改造后預(yù)計(jì)該市在一個(gè)月內(nèi)(以30天記),紅色文化旅游人數(shù)f(x)(萬人)與日期x(日)的函數(shù)關(guān)系近似滿足:$f(x)=3-\frac{1}{20}x$,人均消費(fèi)g(x)(元)與日期x(日)的函數(shù)關(guān)系近似滿足:g(x)=60-|x-20|.
(1)求該市旅游日收入p(x)(萬元)與日期x(1≤x≤30,x∈N*)的函數(shù)關(guān)系式;
(2)當(dāng)x取何值時(shí),該市旅游日收入p(x)最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若實(shí)數(shù)數(shù)列:1,a1,a2,a3,81成等比數(shù)列,則圓錐曲線${x^2}+\frac{y^2}{a_2}=1$的離心率是( 。
A.$\sqrt{10}$ 或$\frac{{2\sqrt{2}}}{3}$B.$\sqrt{10}$C.$\frac{{2\sqrt{2}}}{3}$D.$\frac{1}{3}$或$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)$f(x)=\frac{1}{ln(2x+1)}$的定義域是( 。
A.$(-\frac{1}{2},+∞)$B.$(-\frac{1}{2},0)∪(0,+∞)$C.$[-\frac{1}{2},+∞)$D.[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知P是橢圓$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{2}$=1和雙曲線x2-y2=2的一個(gè)交點(diǎn),若F1、F2分別是橢圓的左、右焦點(diǎn),則cos∠F1PF2=90°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如圖,一個(gè)小朋友按如圖所示的規(guī)則練習(xí)數(shù)數(shù),1大拇指,2食指,3中指,4無名指,5小指,6無名指,…,一直數(shù)到2015時(shí),對應(yīng)的指頭是中指(填指頭的名稱).

查看答案和解析>>

同步練習(xí)冊答案