分析 不妨設(shè)點(diǎn)P在第一象限,|F1F2|=4.則|PF1|+|PF2|=2$\sqrt{6}$,|PF1|-|PF2|=2$\sqrt{2}$,可得|PF1|,|PF2|.再利用余弦定理即可得出.
解答 解:不妨設(shè)點(diǎn)P在第一象限,
|F1F2|=4.
則|PF1|+|PF2|=2$\sqrt{6}$,|PF1|-|PF2|=2$\sqrt{2}$,
∴|PF1|=$\sqrt{6}$$+\sqrt{2}$,|PF2|=$\sqrt{6}$-$\sqrt{2}$.
∴cos∠F1PF2=$\frac{|P{F}_{1}{|}^{2}+|P{F}_{2}{|}^{2}-|{F}_{1}{F}_{2}{|}^{2}}{2|P{F}_{1}||P{F}_{2}|}$=$\frac{(\sqrt{6}+\sqrt{2})^{2}+(\sqrt{6}-\sqrt{2})^{2}-{4}^{2}}{2(\sqrt{6}+\sqrt{2})(\sqrt{6}-\sqrt{2})}$=0,
∴∠F1PF2=90°.
故答案為:90°.
點(diǎn)評(píng) 本題考查了橢圓與雙曲線的定義、余弦定理,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $2\sqrt{6}$ | B. | $\frac{{3\sqrt{2}}}{4}$ | C. | $\frac{{3\sqrt{3}}}{4}$ | D. | $\frac{{3\sqrt{6}}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | π | B. | 4π | C. | 9π | D. | 16π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{17\sqrt{17}}{6}$π | B. | 34π | C. | 17π | D. | $\frac{17}{4}$π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com