9.如圖,一個(gè)小朋友按如圖所示的規(guī)則練習(xí)數(shù)數(shù),1大拇指,2食指,3中指,4無(wú)名指,5小指,6無(wú)名指,…,一直數(shù)到2015時(shí),對(duì)應(yīng)的指頭是中指(填指頭的名稱(chēng)).

分析 根據(jù)所給的數(shù)據(jù)找出規(guī)律,利用歸納推理進(jìn)行推導(dǎo)即可.

解答 解:第1圈的數(shù)字為1,2,3,4,5,共5個(gè)數(shù)字,除第1圈外其余每一圈都有4個(gè)數(shù)字,且偶數(shù)圈是從無(wú)名指開(kāi)始,空小指位置,
奇數(shù)圈(1圈除外),從食指始從上往下排,
則2015=5+2010=5+502×4+2,
即2015在第504圈上的第2個(gè)數(shù),此時(shí)從無(wú)名指開(kāi)始從下往上排,第二個(gè)數(shù)排在中指上,
故答案為:中指

點(diǎn)評(píng) 本題主要考查歸納推理的應(yīng)用,根據(jù)圖象尋找規(guī)律是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,橢圓的左、右焦點(diǎn)分別是F1,F(xiàn)2,且|F1F2|=2.
(Ⅰ)求橢圓C的方程;
(Ⅱ)P為橢圓上一點(diǎn),PF1與y軸相交于Q,且$\overrightarrow{F_1P}$=2$\overrightarrow{F_1Q}$.若PF1與橢圓相交于另一點(diǎn)R,求|PR|的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知兩定點(diǎn)A(-3,0),B(3,0),如果動(dòng)點(diǎn)P滿(mǎn)足|PA|=2|PB|,則點(diǎn)P的軌跡所包圍的圖形的面積等于( 。
A.πB.C.D.16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.某幾何體的三視圖如圖所示,則該幾何體的外接球的表面積為( 。
A.$\frac{17\sqrt{17}}{6}$πB.34πC.17πD.$\frac{17}{4}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1上一點(diǎn)P到焦點(diǎn)F1(-2,0)的距離為$\frac{13}{3}$,則△PF1F2的面積為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.解方程:
(1)32-x=2;
(2)3x+1=21-2x;
(3)($\frac{4}{9}$)x•($\frac{27}{8}$)x-1=$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.下列命題為真命題的是( 。
A.已知x,y∈R,則$\left\{\begin{array}{l}{x>1}\\{y>2}\end{array}\right.$是$\left\{\begin{array}{l}{x+y>3}\\{xy>2}\end{array}\right.$的充要條件
B.對(duì)空間任意一點(diǎn)O與不共線的三點(diǎn)A,B,C,若$\overrightarrow{OP}=x\overrightarrow{OA}+y\overrightarrow{Ob}+z\overrightarrow{OC}$(其中x,y,z∈R),則P,A,B,C四點(diǎn)共面
C.?a,b∈R,$\frac{a+b}{2}≥\sqrt{ab}$
D.?x∈R,sinx+cosx=$\frac{7}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知橢圓M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點(diǎn)分別是F1,F(xiàn)2,上頂點(diǎn)為B點(diǎn),右焦點(diǎn)F2到直線F1B的距離為$\sqrt{3}$,橢圓M的離心率為e=$\frac{\sqrt{3}}{2}$.
(1)求橢圓M的標(biāo)準(zhǔn)方程;
(2)過(guò)原點(diǎn)O作兩條互相垂直的射線,與橢圓M交于P、Q兩點(diǎn),問(wèn):點(diǎn)O到直線PQ的距離是否為定值?若是,試求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),它的一個(gè)焦點(diǎn)為F1(-1,0),且經(jīng)過(guò)點(diǎn)M(-1,$\frac{3}{2}$),則橢圓C的方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.

查看答案和解析>>

同步練習(xí)冊(cè)答案