設(shè)函數(shù)f(x)=sin(2x+
π
4
).在給出的直角坐標系中畫出函數(shù)y=f(x)在區(qū)間[0,π]上的圖象.
考點:五點法作函數(shù)y=Asin(ωx+φ)的圖象
專題:三角函數(shù)的圖像與性質(zhì)
分析:根據(jù)五點法,求出對應(yīng)的五點,即可得到結(jié)論.
解答: 解:f(x)=sin(2x+
π
4
)
,列表:
x0
π
8
8
8
8
π
2x+
π
4
π
4
π
2
π
2
4
sin(2x+
π
4
)
2
2
10-10
2
2
描點得圖象:
點評:本題主要考查三角函數(shù)的圖象,利用五點法是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的前n項和為Sn,Sn=kn(n+1)-n(k∈R),公差d為2.
(1)求an與k;
(2)若數(shù)列{bn}滿足b1=2,bn-bn-1=n•2 an(n≥2),求bn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓M的對稱軸為坐標軸,且拋物線y2=4x的焦點F是橢圓M的一個焦點,以F為圓心,以橢圓M的短半軸長為半徑的圓與直線y=
2
4
(x+2)相切
(1)求橢圓M的方程;
(2)已知直線l:y=kx+m與橢圓M交于A,B兩點,且橢圓上的點P滿足
OP
=
OA
+
OB
.證明:四邊形OAPB的面積為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用分析法證明不等式:
2
-
6
3
-
7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=-x2+4x-4,x為何值時:
(1)f(x)=0?
(2)f(x)>0?
(3)f(x)<0?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)=loga(1-
2
x
)(a>0且a≠1),將y=f(x)的圖象向左平移1個單位得到y(tǒng)=g(x)的圖象,F(xiàn)(x)=
1+ax
1-ax

(1)設(shè)關(guān)于x的方程loga
t
(x2-1)(7-x)
=g(x)在區(qū)間[2,6]上有實數(shù)解,求t的取值范圍;
(2)當a=e(e為自然對數(shù)的底數(shù))時,證明:g(2)+g(3)+…+g(n)>
2-n-n2
2n(n+1)
;
(3)當0<a≤
1
2
時,試比較|
n
k=1
F(k)-n|與4的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在△ABC中,∠A,∠B,∠C的對邊分別為a,b,c,且a2=b(b+c).
(1)求證:∠A=2∠B;
(2)若a=
3
b,判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=x+
1
x-2
,g(x)=x2-
1
x-2
,則f(x)+g(x)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

海上一觀測站測得方位角240°的方向上有一艘停止待修的商船,在商船的正東方有一艘海盜船正向它靠近,速度為每小時90海里.此時海盜船距觀測站10
7
海里,20分鐘后測得海盜船距觀測站20海里,再過
 
分鐘,海盜船即可到達商船.

查看答案和解析>>

同步練習冊答案