【題目】在直角坐標(biāo)系中,曲線,如圖將分別繞原點逆時針旋轉(zhuǎn),,得到曲線,,.以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系.
(1)分別寫出曲線的極坐標(biāo)方程;
(2)設(shè)交于兩點,交于兩點(其中均不與原點重合),若四邊形的面積為,求的值.
【答案】(1)的極坐標(biāo)方程為, 的極坐標(biāo)方程為 的極坐標(biāo)方程為, 的極坐標(biāo)方程為.
(2)
【解析】
(1)將代入,得的極坐標(biāo)方程為,再利用旋轉(zhuǎn)可得的極坐標(biāo)方程;
(2)將代入得, 將代入得, 再根據(jù)面積關(guān)系,可求得的值.
(1)將代入,
得的極坐標(biāo)方程為,
在一致的情況下:
點旋轉(zhuǎn)到點,且,所以,
所以的極坐標(biāo)方程為,
點旋轉(zhuǎn)到點,且,所以,
所以的極坐標(biāo)方程為,
點旋轉(zhuǎn)到點,且,所以,
所以的極坐標(biāo)方程為.
(2)將代入得,
將代入得,
因為
,
解得,因為,所以.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若函數(shù)在區(qū)間內(nèi)恰好有奇數(shù)個零點,則實數(shù)k的所有取值之和為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,M,N,P分別是C1D1,BC,A1D1的中點,有下列四個結(jié)論:
①AP與CM是異面直線;②AP,CM,DD1相交于一點;③MN∥BD1;
④MN∥平面BB1D1D.
其中所有正確結(jié)論的編號是( )
A.①④B.②④C.①④D.②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列的數(shù)列的首項,前n項和為,若數(shù)列滿足:對任意正整數(shù)n,k,當(dāng)時,總成立,則稱數(shù)列是“數(shù)列”
(1)若是公比為2的等比數(shù)列,試判斷是否為“”數(shù)列?
(2)若是公差為d的等差數(shù)列,且是“數(shù)列”,求實數(shù)d的值;
(3)若數(shù)列既是“”,又是“”,求證:數(shù)列為等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時,判斷并說明函數(shù)的零點個數(shù).若函數(shù)所有零點均在區(qū)間內(nèi),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱維中,平面平面,,,是棱的中點,點在棱上點是的重心.
(1)若是的中點,證明面;
(2)是否存在點,使二面角的大小為,若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,四邊形是等腰梯形,,,,三角形是等邊三角形,平面平面,、分別為、的中點.
(1)求證:平面平面;
(2)若,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為常數(shù),為自然對數(shù)的底數(shù))的圖象在點處的切線與該函數(shù)的圖象恰好有三個公共點,則實數(shù)的取值范圍是( )
A.B.或
C.D.或
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1),求函數(shù)的單調(diào)區(qū)間:
(2)對于任意,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com