【題目】已知函數(shù),若函數(shù)在區(qū)間內(nèi)恰好有奇數(shù)個(gè)零點(diǎn),則實(shí)數(shù)k的所有取值之和為__________.
【答案】
【解析】
討論0<x≤時(shí)與<x<π時(shí)函數(shù)解析式,令k=sinx+cosx﹣4sinxcosx,換元,根據(jù)二次函數(shù)的單調(diào)性即可得出答案.
解:(1)當(dāng)0<x≤時(shí),設(shè)k=sinx+cosx﹣4sinxcosx,
令t=sinx+cosx=sin(x+),則t∈[1,],
k=t﹣2(t2﹣1)=﹣2t2+ t+2,t∈[1,]為單調(diào)函數(shù),
則可知當(dāng)t=1時(shí),即k=1時(shí),一解;
當(dāng)t=時(shí),即k=時(shí),一解;
當(dāng)1<t<時(shí),即﹣2<k<1時(shí)兩解;
(2)當(dāng)<x<π時(shí),設(shè)k=sinx﹣cosx﹣4sinxcosx,
令t=sinx﹣cosx=sin(x﹣),則t∈(1,],
k=t+2(t2﹣1),t∈(1,]也為單調(diào)函數(shù),
則可知當(dāng)1<t<時(shí),即1<k<2+時(shí)兩解,
當(dāng)t=時(shí),即k=時(shí)一解,
綜上:k=1或k=﹣2或k=,
故所有k的和為.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高三男生體育課上做投籃球游戲,兩人一組,每輪游戲中,每小組兩人每人投籃兩次,投籃投進(jìn)的次數(shù)之和不少于次稱為“優(yōu)秀小組”.小明與小亮同一小組,小明、小亮投籃投進(jìn)的概率分別為.
(1)若,,則在第一輪游戲他們獲“優(yōu)秀小組”的概率;
(2)若則游戲中小明小亮小組要想獲得“優(yōu)秀小組”次數(shù)為次,則理論上至少要進(jìn)行多少輪游戲才行?并求此時(shí)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的離心率,左焦點(diǎn)為,右頂點(diǎn)為,過(guò)點(diǎn)的直線交橢圓于兩點(diǎn),若直線垂直于軸時(shí),有.
(1)求橢圓的方程;
(2)設(shè)直線: 上兩點(diǎn), 關(guān)于軸對(duì)稱,直線與橢圓相交于點(diǎn)(異于點(diǎn)),直線與軸相交于點(diǎn).若的面積為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年4月25日-27日,北京召開第二屆“一帶一路”國(guó)際高峰論壇,組委會(huì)要從6個(gè)國(guó)內(nèi)媒體團(tuán)和3個(gè)國(guó)外媒體團(tuán)中選出3個(gè)媒體團(tuán)進(jìn)行提問(wèn),要求這三個(gè)媒體團(tuán)中既有國(guó)內(nèi)媒體團(tuán)又有國(guó)外媒體團(tuán),且國(guó)內(nèi)媒體團(tuán)不能連續(xù)提問(wèn),則不同的提問(wèn)方式的種數(shù)為 ( )
A. 198B. 268C. 306D. 378
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為弘揚(yáng)新時(shí)代的中國(guó)女排精神.甲、乙兩個(gè)女排校隊(duì)舉行一場(chǎng)友誼比賽,采用五局三勝制(即某隊(duì)先贏三局則獲勝,比賽隨即結(jié)束).若兩隊(duì)的競(jìng)技水平和比賽狀態(tài)相當(dāng),且每局比賽相互獨(dú)立,則比賽結(jié)束時(shí)已經(jīng)進(jìn)行的比賽局?jǐn)?shù)的數(shù)學(xué)期望是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列,若對(duì)任意,都有成立,則稱數(shù)列為“差增數(shù)列”.
(1)試判斷數(shù)列是否為“差增數(shù)列”,并說(shuō)明理由;
(2)若數(shù)列為“差增數(shù)列”,且,,對(duì)于給定的正整數(shù)m,當(dāng),項(xiàng)數(shù)k的最大值為20時(shí),求m的所有可能取值的集合;
(3)若數(shù)列為“差增數(shù)列”,,且,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四棱錐的底面為邊長(zhǎng)為2的菱形,平面,,,為棱上一點(diǎn),且.
(1)求證:;
(2)求二面角的余弦值;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠利用隨機(jī)數(shù)表對(duì)生產(chǎn)的600個(gè)零件進(jìn)行抽樣測(cè)試,先將600個(gè)零件進(jìn)行編號(hào),編號(hào)分別為001,002,....599,600從中抽取60個(gè)樣本,現(xiàn)提供隨機(jī)數(shù)表的第4行到第6行:
若從表中第6行第6列開始向右依次讀取3個(gè)數(shù)據(jù),則得到的第7個(gè)樣本編號(hào)( )
A.522B.324C.535D.578
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線,如圖將分別繞原點(diǎn)逆時(shí)針旋轉(zhuǎn),,得到曲線,,.以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(1)分別寫出曲線的極坐標(biāo)方程;
(2)設(shè)交于兩點(diǎn),交于兩點(diǎn)(其中均不與原點(diǎn)重合),若四邊形的面積為,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com