1.設(shè)函數(shù)f(x)=$\frac{1}{{2}^{x}+\sqrt{2}}$,類(lèi)比課本中推導(dǎo)等差數(shù)列前n項(xiàng)和公式的方法,可求得f(-2015)+f(-2014)+f(-2013)+…+f(2014)+f(2015)+f(2016)的值為1008$\sqrt{2}$.

分析 根據(jù)課本中推導(dǎo)等差數(shù)列前n項(xiàng)和的公式的方法-倒序相加法,觀察所求式子的特點(diǎn),應(yīng)先求f(x)+f(1-x)的值,從而求出即可.

解答 解:∵f(x)=$\frac{1}{{2}^{x}+\sqrt{2}}$,
∴f(x)+f(1-x)
=$\frac{1}{{2}^{x}+\sqrt{2}}$+$\frac{1}{{2}^{1-x}+\sqrt{2}}$
=$\frac{1}{{2}^{x}+\sqrt{2}}$+$\frac{{2}^{x}}{2+\sqrt{2}{•2}^{x}}$
=$\frac{{2}^{x}+\sqrt{2}}{\sqrt{2}{(2}^{x}+\sqrt{2})}$=$\frac{\sqrt{2}}{2}$,
即 f(-2015)+f(2016)=$\frac{\sqrt{2}}{2}$,
f(-2014)+f(2015)=$\frac{\sqrt{2}}{2}$,
f(-2013)+f(2014)=$\frac{\sqrt{2}}{2}$,
…,
f(-2)+f(3)=$\frac{\sqrt{2}}{2}$,
f(-1)+f(2)=$\frac{\sqrt{2}}{2}$,
f(0)+f(1)=$\frac{\sqrt{2}}{2}$,
∴f(-2015)+f(-2014)+f(-2013)+…+f(2014)+f(2015)+f(2016)=2016×$\frac{\sqrt{2}}{2}$=1008$\sqrt{2}$,
故答案為:1008$\sqrt{2}$.

點(diǎn)評(píng) 本題為規(guī)律性的題目,要善于觀察式子的特點(diǎn),并且此題給出了明確的方法,從而降低了本題難度.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知函數(shù)f(x)=a2x-2a+1,若命題“?x∈[0,1],f(x)>0”是假命題,則實(shí)數(shù)a的取值范圍為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知f(x)=x+xlnx,若存在實(shí)數(shù)m∈(2,+∞),使得f(m)≤k(m-2)成立,則整數(shù)k的最小取值為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知集合A={x|-3<x<6},B={x|2<x<7},則A∩(∁RB)=( 。
A.(2,6)B.(2,7)C.(-3,2]D.(-3,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若關(guān)于x的不等式xex-ax+a<0的解集為(m,n)(n<0),且(m,n)中只有一個(gè)整數(shù),則實(shí)數(shù)a的取值范圍是( 。
A.[$\frac{1}{{e}^{2}}$,$\frac{1}{e}$)B.[$\frac{2}{3{e}^{2}}$,$\frac{1}{2e}$)C.[$\frac{1}{{e}^{2}}$,$\frac{2}{e}$)D.[$\frac{2}{3{e}^{2}}$,$\frac{1}{e}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)集合A={x|0<x<2},B={x|x2+x-2≥0},則A∩B=(  )
A.(0,1]B.[1,2)C.[-2,2)D.(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知函數(shù)f(x)為奇函數(shù),且當(dāng)x>0時(shí),f(x)=$\sqrt{x}$-$\frac{2}{x}$,則f(-4)=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.公元263年左右,我國(guó)數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無(wú)限增加時(shí),多邊形面積可無(wú)限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”.利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖則輸出的值為( 。
(參考數(shù)據(jù):sin15°≈0.2588,sin7.5°≈0.1305)
A.6B.12C.24D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.執(zhí)行表中的算法語(yǔ)句,若輸入(INPUT)的x值為2,則輸出(PRINT)的y值為2.

查看答案和解析>>

同步練習(xí)冊(cè)答案