11.執(zhí)行表中的算法語(yǔ)句,若輸入(INPUT)的x值為2,則輸出(PRINT)的y值為2.

分析 算法的功能是計(jì)算y=$\left\{\begin{array}{l}{2(x-1)}&{x<0}\\{{x}^{2}-2}&{x≥0}\end{array}\right.$的值,代入x=2,計(jì)算y的值即可得解.

解答 解:由程序語(yǔ)句知:算法的功能是計(jì)算y=$\left\{\begin{array}{l}{2(x-1)}&{x<0}\\{{x}^{2}-2}&{x≥0}\end{array}\right.$的值,
當(dāng)輸入的x=2時(shí),y=22-2=2.
故答案為:2.

點(diǎn)評(píng) 本題考查了選擇結(jié)構(gòu)的程序語(yǔ)句,根據(jù)語(yǔ)句判斷算法的功能是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.設(shè)函數(shù)f(x)=$\frac{1}{{2}^{x}+\sqrt{2}}$,類比課本中推導(dǎo)等差數(shù)列前n項(xiàng)和公式的方法,可求得f(-2015)+f(-2014)+f(-2013)+…+f(2014)+f(2015)+f(2016)的值為1008$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.某空調(diào)專賣店試銷A、B、C三種新型空調(diào),銷售情況如表所示:
 第一周  第二周第三周  第四周第五周 
 A型數(shù)量(臺(tái)) 11 10 15 A4 A5
 B型數(shù)量(臺(tái)) 10 12 13 B4 B5
 C型數(shù)量(臺(tái)) 15 12C4  C5
(1)求A型空調(diào)前三周的平均周銷售量;
(2)根據(jù)C型空調(diào)前三周的銷售情況,預(yù)估C型空調(diào)五周的平均周銷售量為10臺(tái),當(dāng)C型空調(diào)周銷售量的方差最小時(shí),求C4,C5的值;
(注:方差s2=$\frac{1}{n}$[x1-$\overline{x}$)2+(x${\;}_{2}-\overline{x}$)2+…+(xn-$\overline{x}$)2],其中$\overline{x}$為x1,x2,…,xn的平均數(shù))
(3)為跟蹤調(diào)查空調(diào)的使用情況,根據(jù)銷售記錄,從第二周和第三周售出的空調(diào)中分別隨機(jī)抽取一臺(tái),求抽取的兩臺(tái)空調(diào)中A型空調(diào)臺(tái)數(shù)X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.正三棱錐P-ABC,側(cè)棱長(zhǎng)與底面邊長(zhǎng)相等,F(xiàn)是BC的中點(diǎn),異面直線AC與PF所成的角為arccos$\frac{\sqrt{3}}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.計(jì)算:tan15°tan30°tan45°tan75°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知$\overrightarrow{a}$=(2,-1),$\overrightarrow$=(-1,3),則2$\overrightarrow{a}$+3$\overrightarrow$的坐標(biāo)為(1,7).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知命題:p“?x0∈R,x02+2ax0+a≤0”為假命題,則實(shí)數(shù)a的取值范圍是( 。
A.(0,1)B.[0,1]C.(1,2)D.(-∞,0)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知(2x-1)10=a0+a1x+a2x2++a9x9+a10x10,求a2+a3+…+a9+a10的值為( 。
A.-20B.0C.1D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.函數(shù)f(x)=(x-1)0+lg$\frac{1-x}{1+x}$的定義域是(-1,1).

查看答案和解析>>

同步練習(xí)冊(cè)答案