分析 (I)解法1:通過分類討論,將f(2)=|2-a|+2(1-a)中的絕對(duì)值符號(hào)去掉,再分段解f(2)<0,最后取并即可;
解法2:由f(2)<0,得|2-a|+2(1-a)<0,即|a-2|<2(a-1),利用絕對(duì)值的幾何意義,可得-2(a-1)<a-2<2(a-1),解之即可;
(Ⅱ)依題意,f(x)≥0恒成立⇒$\left\{\begin{array}{l}-a≤0\\ 2-a≥0\\-{a}^{2}+a≥0\end{array}\right.$,解之即可.
解答 解:( I)解法1:$f(2)=|{2-a}|+2({1-a})=\left\{{\begin{array}{l}{-a,}&{a>2}\\{4-3a,}&{a≤2}\end{array}}\right.$----------------------(2分)
不等式f(2)<0等價(jià)于$\left\{{\begin{array}{l}{a>2}\\{-a<0}\end{array}}\right.$或者$\left\{{\begin{array}{l}{a≤2}\\{4-3a<0}\end{array}}\right.$,-----------------------------------(3分)
解得a>2或$\frac{4}{3}<a≤2$,即$a>\frac{4}{3}$,∴所求不等式的解集為$(\frac{4}{3},\;+∞)$;-----------------(4分)
解法2:由f(2)<0,得|2-a|+2(1-a)<0,即|a-2|<2(a-1),----------------(2分)
-2(a-1)<a-2<2(a-1),解得$a>\frac{4}{3}$,解集為$(\frac{4}{3},\;+∞)$;-------------------------(4分)
(II)$f(x)=|{x-a}|+({1-a})x=\left\{{\begin{array}{l}{-ax+a,}&{x≤a}\\{({2-a})x-a,}&{x>a}\end{array}}\right.$,-----------------------------(6分)
因?yàn)閒(x)≥0恒成立,故有$\left\{{\begin{array}{l}{-a≤0}\\{2-a≥0}\\{-{a^2}+a≥0}\end{array}}\right.$,-----------------------------------------(8分)
解得0≤a≤1.-----------------------------------------------------------------(10分)
點(diǎn)評(píng) 本題考查分段函數(shù)的應(yīng)用,考查等價(jià)轉(zhuǎn)化思想與函數(shù)恒成立問題,突出考查運(yùn)算求解能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{32}$ | B. | $\frac{1}{16}$ | C. | $\frac{1}{64}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | $\sqrt{3}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -4 | B. | -3 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com