10.設(shè)函數(shù)f(x)=|2x-a|,
(Ⅰ)若a=4,求f(x)≤x的解集;
(Ⅱ)若f(x+1)>|2-a|對?x∈(0,+∞)恒成立,求實(shí)數(shù)a的取值范圍.

分析 (Ⅰ)法一:通過討論2x-4的范圍,得到關(guān)于x的不等式組,解出取并集;法二:根據(jù)題意得出x≥0,再去絕對值即可,法三:根據(jù)題意得出x≥0,兩邊平方解出即可;
(Ⅱ)法一:問題轉(zhuǎn)化為f(x+1)>f(1)對?x∈(0,+∞)恒成立,結(jié)合函數(shù)的單調(diào)性問題,求出a的范圍即可;法二:等價(jià)于(2x+2-a)2>(2-a)2對?x∈(0,+∞)恒成立,求出a的范圍即可.

解答 解:(Ⅰ)若a=4,則f(x)≤x可化為|2x-4|≤x,
法1:即$\left\{\begin{array}{l}2x-4≤0\\ 4-2x≤x\end{array}\right.$或$\left\{\begin{array}{l}2x-4≥0\\ 2x-4≤x\end{array}\right.$,
解得$\frac{4}{3}≤x≤4$,
所以f(x)≤x的解集為$\left\{{x|\frac{4}{3}≤x≤4}\right\}$;
法2:即$\left\{\begin{array}{l}x≥0\\ 2x-4≤x\\ 2x-4≥-x\end{array}\right.$,
解得$\frac{4}{3}≤x≤4$,
所以f(x)≤x的解集為$\left\{{x|\frac{4}{3}≤x≤4}\right\}$;
法3:即$\left\{\begin{array}{l}x≥0\\{({2x-4})^2}≤{x^2}\end{array}\right.$,
即$\left\{\begin{array}{l}x≥0\\ 3{x^2}-16x+16≤0\end{array}\right.$解得$\frac{4}{3}≤x≤4$,
所以f(x)≤x的解集為$\left\{{x|\frac{4}{3}≤x≤4}\right\}$;
(Ⅱ)法1:f(x+1)>|2-a|對?x∈(0,+∞)恒成立
即f(x+1)>f(1)對?x∈(0,+∞)恒成立,
又因?yàn)閒(x)=|2x-a|在$({-∞,\frac{a}{2}}]$上單調(diào)遞減,在$[{\frac{a}{2},+∞})$上單調(diào)遞增,
所以$\frac{a}{2}≤1$解得a≤2,
所以實(shí)數(shù)a的取值范圍為(-∞,2];
法2:f(x+1)>|2-a|對?x∈(0,+∞)恒成立
即|2x+2-a|>|2-a|對?x∈(0,+∞)恒成立
等價(jià)于(2x+2-a)2>(2-a)2對?x∈(0,+∞)恒成立,
即a<2+x對?x∈(0,+∞)恒成立,
所以a≤2…(9分)
所以實(shí)數(shù)a的取值范圍為(-∞,2].

點(diǎn)評 本題考查了解絕對值不等式問題,考查分類討論思想,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知直線l過(0,3),且與直線x+y+1=0垂直,則直線l的方程是( 。
A.x+y-2=0B.x-y+3=0C.x+y-3=0D.x-y+2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.1+x1+x2+…+xn(x≠0)=$\left\{\begin{array}{l}{n+1,x=1}\\{\frac{1-{x}^{n+1}}{1-x},x≠0,1}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若a為實(shí)數(shù),且$\frac{2-ai}{1+i}=3+i$,則a=( 。
A.-4B.-3C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某市為慶祝北京奪得2022年冬奧會舉辦權(quán),圍繞“全民健身促健康,同心共筑中國夢”主題開展全民健身活動,組織方從參加活動的群眾中隨機(jī)抽取120名群眾,按他們的年齡分組:第1組[20,30),第2組[30,40),第3組[40,50),第4組[50,60),第5組[60,70],得到的頻率分布直方圖如圖所示.
(Ⅰ)若電視臺記者要從抽取的群眾中選1人進(jìn)行采訪,求被采訪人恰好在第1組或第4組的概率;
(Ⅱ)已知第1組群眾中男性有3名,組織方要從第1組中隨機(jī)抽取2名群眾組成維權(quán)志愿者服務(wù)隊(duì),求至少有1名女性群眾的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知a,b,c為互不相等的整數(shù),則4(a2+b2+c2)-(a+b+c)2的最小值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.執(zhí)行如圖所示的程序框圖,如果輸入的x=t=3,則輸出的M等于( 。
A.3B.$\frac{11}{3}$C.$\frac{19}{6}$D.$\frac{37}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知定義在[1,+∞)上的函數(shù)$f(x)=\left\{\begin{array}{l}4-8|{x-\frac{3}{2}}|,1≤x≤2\\ \frac{1}{2}f({\frac{x}{2}}),x>2\end{array}\right.$,當(dāng)x∈[2n-1,2n](n∈N*)時,函數(shù)f(x)的圖象與x軸圍成的圖象面積為Sn,則Sn=( 。
A.nB.2C.2nD.$\frac{n}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若直線y=2x+b與曲線y=$\sqrt{4-{x}^{2}}$有且僅有一個公共點(diǎn),則b的取值范圍為{b|-4≤b<4,或b=$2\sqrt{5}$}.

查看答案和解析>>

同步練習(xí)冊答案