3.若圓x2+y2=9與圓x2+y2-4ax-2y+4a2-3=0相切,則實(shí)數(shù)a=0或±$\sqrt{6}$.

分析 利用圓心距等于半徑和、差,建立方程,即可求出a的值.

解答 解:x2+y2-4ax-2y+4a2-3=0,可化為(x-2a)2+(y-1)2=4,
∵x2+y2=9與圓x2+y2-4ax-2y+4a2-3=0,
∴$\sqrt{4{a}^{2}+1}$=1或5,
∴a=0或±$\sqrt{6}$.
故答案為:0或±$\sqrt{6}$

點(diǎn)評(píng) 本題考查圓與圓的位置關(guān)系,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.不等式組$\left\{\begin{array}{l}{x-y≤0}\\{x+y≤0}\end{array}\right.$表示的平面區(qū)域是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.命題p:?x∈R,ax2+ax-1≥0,q:$\frac{3}{1-a}$>1,r:(a-m)(a-m-1)>0.
(1)若¬p∧q為假命題,求實(shí)數(shù)a的取值范圍;
(2)若¬q是¬r的必要不充分條件,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知集合A={a|loga$\frac{3}{4}$<1,a>0且a≠1},B={α|sinα+$\sqrt{3}$cosα>1,α∈(0,π)},
(1)求A∩B;
(2)求A∩∁RB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知三個(gè)集合A、B、C,則“A⊆B,B⊆C,C⊆A”是“A=B=C”的( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.既非充分又非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知sinx=2cosx,則$\frac{si{n}^{2}x}{1+co{s}^{2}x}$=$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知數(shù)列{an}滿(mǎn)足$\frac{1}{{a}_{n+1}-4}$=$\frac{{a}_{n}}{4({a}_{n}-4)}$,且a1=8.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)Sn為數(shù)列{$\frac{\sqrt{{a}_{n}}-2}{\sqrt{n+1}}$}的前n項(xiàng)和,證明:Sn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知命題P:x1,x2是方程x2-mx-1=0的兩個(gè)實(shí)根,且不等式a2+4a-3≤|x1-x2|對(duì)任意m∈R恒成立;命題q:不等式ax2+2x-1>0有解,若命題p∨q為真,p∧q為假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.函數(shù)y=$\frac{{\sqrt{-{x^2}-x+2}}}{lnx}$的定義域?yàn)椋ā 。?table class="qanwser">A.(-2,1)B.[-2,1]C.(0,1)D.(0,1]

查看答案和解析>>

同步練習(xí)冊(cè)答案