設定義域為(0,+∞)的單調(diào)函數(shù)f(x),對任意的x∈(0,+∞),都有f[f(x)-log2x]=3,若x0是方程f(x)-f′(x)=2的一個解,則x0可能存在的區(qū)間是( 。
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)
考點:導數(shù)的運算,函數(shù)解析式的求解及常用方法
專題:函數(shù)的性質(zhì)及應用
分析:根據(jù)條件設f(x)-log2x=t,然后求出t的值,進而求出函數(shù)f(x)的表達式,根據(jù)函數(shù)零點的判定條件即可得到結(jié)論.
解答: 解:設f(x)-log2x=t,則f(x)=log2x+t,且f(t)=3,
當x=t時,f(t)=log2t+t=3,解得t=2,
∴f(x)=log2x+2,f′(x)=
1
xln2
,
則由f(x)-f′(x)=2得log2x+2-
1
xln2
=2,
即log2x-
1
xln2
=0,
設g(x)=log2x-
1
xln2
,則g(1)=-
1
ln2
<0
,g(2)=1-
1
2ln2
>0
,
∴根據(jù)根的存在性定理可知在(1,2)內(nèi)g(x)存在零點,
即x0∈(1,2),
故選:B.
點評:本題主要考查函數(shù)零點區(qū)間的判斷,根據(jù)函數(shù)的性質(zhì)求出函數(shù)f(x)的表達式是解決本題的關鍵,綜合性較強.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設雙曲線
x2
4
-
y2
3
=1的左,右焦點分別為F1,F(xiàn)2,過F1的直線l交雙曲線左支于A,B兩點,則|BF2|+|AF2|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設直線l1:2x-my-1=0,l2:(m-1)x-y+1=0.則“m=2”是“l(fā)1∥l2”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)中既是奇函數(shù),又在區(qū)間[-1,1]上單調(diào)遞減的函數(shù)是( 。
A、f(x)=|tan2x|
B、f(x)=-|x+1|
C、f(x)=
1
2
(2-x-2x
D、f(x)=log
3
2
2-x
2+x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設F1,F(xiàn)2為橢圓C1
x2
a2
+
y2
b2
=1(a>b>0與雙曲線C2的公共點左右焦點,它們在第一象限內(nèi)交于點M,△MF1F2是以線段MF1為底邊的等腰三角形,且|MF1|=2.若橢圓C1的離心率e∈[
3
8
,
4
9
],則雙曲線C2的離心率取值范圍是( 。
A、[
5
4
,
5
3
]
B、[
3
2
,+∞)
C、(1,4]
D、[
3
2
,4]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知ω>0,|φ|<
π
2
,函數(shù)f(x)=sin(ωx+φ)的部分圖象如圖所示.為了得到函數(shù)g(x)=sinωx的圖象,只要將f(x)的圖象(  )
A、向右平移
π
4
個單位長度
B、向右平移
π
8
個單位長度
C、向左平移
π
4
個單位長度
D、向左平移
π
8
個單位長度

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在區(qū)間[0,1]上任取三個數(shù)x,y,z,若向量
m
=(x,y,z),則事件|
m
|≥1發(fā)生的概率是( 。
A、
π
12
B、1-
π
6
C、1-
π
12
D、
π
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
m
=(2cosx+2
3
sinx,1),向量
n
=(cosx,-y),x,y∈R.
(1)若
m
n
,且y=1,求tan(x+
π
6
)的值;
(2)若
m
n
,設y=f(x),求函數(shù)f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓C2的方程為
y2
a2
+
x2
b2
=1(a>b>0),離心率為
2
2
,且短軸一端點和兩焦點構成的三角形面積為1,拋物線C1的方程為y2=2px(p>0),焦點F與拋物線的一個頂點重合.
(Ⅰ)求橢圓C2和拋物線C1的方程;
(Ⅱ)過點F的直線交拋物線C1于不同兩點A,B,交y軸于點N,已知
NA
1
AF
NB
2
BF
,求λ12的值.
(Ⅲ)直線l交橢圓C2于不同兩點P,Q,P,Q在x軸上的射影分別為P′,Q′,滿足
OP
OQ
+
OP′
OQ′
+1=0(O為原點),若點S滿足
OS
=
OP
+
OQ
,判定點S是否在橢圓C2上,并說明理由.

查看答案和解析>>

同步練習冊答案