分析 (1)求出f(x)分段函數(shù)的形式,求出A,B,C的坐標(biāo),從而表示出三角形的面積,求出a的范圍即可;(2)求出f(x)的最小值,從而得到關(guān)于a的不等式,解出即可.
解答 解:(1)f(x)=$\left\{\begin{array}{l}{-x-2a-1,x<-a}\\{3x+2a-1,-a≤x<1}\\{x+2a+1,x≥1}\end{array}\right.$,
如圖示:
函數(shù)f(x)與x軸圍成的△ABC,求得:
A(-2a-1,0),B($\frac{1-2a}{3}$,0),C(-a,-a-1),
∴S△ABC=$\frac{1}{2}$[$[(\frac{1-2a}{3})-(-2a-1)]×|-a-1|$=$\frac{2}{3}$(a+1)2≥4(a>0),
解得:a≥$\sqrt{6}$-1;
(2)由(1)得:f(x)min=f(-a)=-a-1,
對任意x∈R,都有f(x)+2≥0,即(-a-1)+2≥0,
解得:0<a≤1.
點(diǎn)評 本題考查了絕對值函數(shù),考查數(shù)形結(jié)合思想以及解不等式問題,是一道中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com