3.已知角α的終邊在$y=-\frac{4}{3}x(x≤0)$上,則cosα的值是(  )
A.$\frac{3}{5}$B.$-\frac{3}{5}$C.$\frac{4}{5}$D.$-\frac{4}{5}$

分析 根據(jù)題意,α的終邊在第二象限,在α的終邊上任意取一點(diǎn)A(-3,4),利用任意角的三角函數(shù)的定義,求得cosα的值.

解答 解:∵角α的終邊在$y=-\frac{4}{3}x(x≤0)$上,∴α的終邊在第二象限,在α的終邊上任意取一點(diǎn)A(-3,4),
則x=-3,y=4,r=|OA|=5,則cosα=$\frac{x}{r}$=-$\frac{3}{5}$,
故選:B.

點(diǎn)評(píng) 本題主要考查任意角的三角函數(shù)的定義,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.復(fù)數(shù)z=1-2i(i為虛數(shù)單位)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知正項(xiàng)等比數(shù)列{an}中,a1a5=9,S3=$\frac{21}{4}$,則log2a10的值為(  )
A.8B.8+log23C.9+log23D.7+log23

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知函數(shù)f(x)=a(x2+1).若對(duì)任意a∈(-4,-2)及x∈[1,3]時(shí),恒有ma-f(x)>a2+lnx成立,則實(shí)數(shù)m的取值范圍為(  )
A.m≤2B.m<2C.m≤-2D.m<-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知數(shù)列{an},a4=28,且滿足$\frac{{a}_{n+1}+{a}_{n}-1}{{a}_{n+1}-{a}_{n}+1}$=n.
(1)求a1,a2,a3的值;
(2)試猜想數(shù)列{an}的通項(xiàng)公式,并證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.下列說(shuō)法中正確的是④⑤.(填上所有正確的序號(hào))
①如果b=$\sqrt{ac}$,那么數(shù)列a,b,c是等比數(shù)列;
②數(shù)列{an}的前n項(xiàng)和為Sn=3n2+n+1,則該數(shù)列的通項(xiàng)公式an=6n-2(n∈N*);
③等比數(shù)列a,a2,…,an,…的前n項(xiàng)和為Sn=$\frac{{a(1-{a^n})}}{1-a}$;
④若數(shù)列{an}為公差不為零的等差數(shù)列,則數(shù)列{an}中不存在p,q(p≠q)使得ap=aq;
⑤等差數(shù)列{an}的前n項(xiàng)和為Sn,若S10=5,S20=25,則S30=60.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.下列說(shuō)法:
①分類變量A與B的隨機(jī)變量x2越大,說(shuō)明“A與B有關(guān)系”的可信度越大.
②以模型y=cekx去擬合一組數(shù)據(jù)時(shí),為了求出回歸方程,設(shè)z=lny,將其變換后得到線性方程z=0.3x+4,則c,k的值分別是e4和0.3.
③根據(jù)具有線性相關(guān)關(guān)系的兩個(gè)變量的統(tǒng)計(jì)數(shù)據(jù)所得的回歸直線方程為y=a+bx中,b=2,$\overline x=1,\overline y=3$,則a=1.正確的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{1}{3}a{x^3}-\frac{1}{2}b{x^2}$+x(a,b∈R).
(Ⅰ)當(dāng)a=2,b=3時(shí),求函數(shù)f(x)極值;
(Ⅱ)設(shè)b=a+1,當(dāng)0≤a≤1時(shí),對(duì)任意x∈[0,2],都有m≥|f'(x)|恒成立,求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.某學(xué)校為了解學(xué)校食堂的服務(wù)情況,隨機(jī)調(diào)查了50名就餐的教師和學(xué)生.根據(jù)這50名師生對(duì)餐廳服務(wù)質(zhì)量進(jìn)行評(píng)分,繪制出了頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組為[40,50),[50,60),…,[90,100].
(1)求頻率分布直方圖中a的值;
(2)從評(píng)分在[40,60)的師生中,隨機(jī)抽取2人,求此人中恰好有1人評(píng)分在[40,50)上的概率;
(3)學(xué)校規(guī)定:師生對(duì)食堂服務(wù)質(zhì)量的評(píng)分不得低于75分,否則將進(jìn)行內(nèi)部整頓,試用組中數(shù)據(jù)估計(jì)該校師生對(duì)食堂服務(wù)質(zhì)量評(píng)分的平均分,并據(jù)此回答食堂是否需要進(jìn)行內(nèi)部整頓.

查看答案和解析>>

同步練習(xí)冊(cè)答案