13.如圖,在矩形ABCD中,AB=2$\sqrt{3}$,BC=2,動(dòng)點(diǎn)P,Q,R分別在邊AB、BC、CA上,且滿足PQ=QR=PR,則線段PQ的最小值是$\frac{2\sqrt{21}}{7}$.

分析 設(shè)∠BPQ=α,PQ=x,用x,α表示出AP,∠ARP,在△APR中,使用正弦定理得出x關(guān)于α的函數(shù),利用三角函數(shù)的性質(zhì)得出x的最小值.

解答 解:∵PQ=QR=PR,∴△PQR是等邊三角形,
∴∠PQR=∠PRQ=∠RPQ=60°,
∵矩形ABCD中,AB=2$\sqrt{3}$,BC=2,
∴∠BAC=30°,∠BCA=60°,
設(shè)∠BPQ=α(0<α<90°),PQ=x,則PR=x,PB=xcosα,∠APR=120°-α,
∴∠ARP=30°+α,AP=2$\sqrt{3}$-xcosα.
在△APR中,由正弦定理得$\frac{PR}{sinA}=\frac{AP}{sin∠ARP}$,即$\frac{x}{\frac{1}{2}}=\frac{2\sqrt{3}-xcosα}{\frac{1}{2}cosα+\frac{\sqrt{3}}{2}sinα}$,
解得x=$\frac{2\sqrt{3}}{2cosα+\sqrt{3}sinα}$=$\frac{2\sqrt{3}}{\sqrt{7}sin(α+φ)}$.
∴當(dāng)sin(α+φ)=1時(shí),x取得最小值$\frac{2\sqrt{3}}{\sqrt{7}}$=$\frac{2\sqrt{21}}{7}$.
故答案為:$\frac{2\sqrt{21}}{7}$.

點(diǎn)評(píng) 本題考查了正弦定理的應(yīng)用,三角函數(shù)的恒等變換,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知Sn為等差數(shù)列{an}的前n項(xiàng)和,S1<0,2S21+S25=0,則Sn取最小值時(shí),n的值為( 。
A.11B.12C.13D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.將函數(shù)y=x2的圖象按照向量$\overrightarrow{a}$經(jīng)過(guò)一次平移后,得到函數(shù)y=x2+4x+5的圖象,則向量$\overrightarrow{a}$等于( 。
A.(2,-1)B.(-2,1)C.(-2,-1)D.(2,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.解下列方程:
(1)9x-4•3x+3=0;
(2)log3(x2-10)=1+log3x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)數(shù)列{an}是公差為2的等差數(shù)列,數(shù)列{bn}的前n項(xiàng)和Sn,滿足2Sn=3n+1-3且a2=b1
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)若cn=an•bn,設(shè)Tn為{cn}的前n項(xiàng)和,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知f(x)=x2+x+1,g(x-1)=f(x+1),則g(x)=x2+5x+7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.函數(shù)f(x)=lg(x2-ax-1)在(1,+∞)上是增函數(shù),則實(shí)數(shù)a的取值范圍是a≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知拋物線y2=2px(p>0)的焦點(diǎn)F到準(zhǔn)線的距離為2,若拋物線上一點(diǎn)P滿足$\overrightarrow{PF}=2\overrightarrow{FM},|\overrightarrow{PF}$|=3,則點(diǎn)M的坐標(biāo)為( 。
A.($\frac{1}{2}$,2$\sqrt{2}$)或($\frac{1}{2}$,-2$\sqrt{2}$)B.($\frac{1}{2}$,$\sqrt{2}$)或($\frac{1}{2}$,-$\sqrt{2}$)C.(2$\sqrt{2}$,$\frac{1}{2}$)或(2$\sqrt{2}$,-$\frac{1}{2}$)D.($\sqrt{2}$,$\frac{1}{2}$)或($\sqrt{2}$,-$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知拋物線y2=2px(p>0)的焦點(diǎn)坐標(biāo)為(1,0),過(guò)點(diǎn)M(0,2)的直線l與拋物線交于A,B兩點(diǎn),且直線l與x軸交于點(diǎn)C.
(1)求證:|MC|2=|MA|•|MB|;
(2)設(shè)$\overrightarrow{MA}$=α$\overrightarrow{AC}$,$\overrightarrow{MB}$=$β\overrightarrow{BC}$,試問(wèn)α+β是否為定值,若是,求出此定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案