分析 由題意求出直線與坐標(biāo)軸的交點(diǎn),求出M的坐標(biāo),然后橢圓方程即可求解橢圓的離心率.
解答 解:直線y=$\sqrt{3}$(x+c)與坐標(biāo)軸的交點(diǎn)分別為A(-c,0),B(0,$\sqrt{3}$c).|AB|=2c.
直線y=$\sqrt{3}$(x+c)與橢圓的一個(gè)交點(diǎn)為M,O為坐標(biāo)原點(diǎn),若|OM|=c,
可得M是AB的中點(diǎn),M($-\frac{c}{2},\frac{\sqrt{3}c}{2}$).
則:$\frac{{c}^{2}}{{4a}^{2}}+\frac{{3c}^{2}}{{4b}^{2}}=1$,即$\frac{{e}^{2}}{4}+\frac{{3c}^{2}}{{4a}^{2}-4{c}^{2}}=1$,
化簡(jiǎn)得:$\frac{{e}^{2}}{4}+\frac{{3e}^{2}}{4-4{e}^{2}}=1$,
解得e=$\sqrt{3}-1$.
故答案為:$\sqrt{3}-1$.
點(diǎn)評(píng) 本題考查橢圓的離心率的求法,橢圓的簡(jiǎn)單性質(zhì)的應(yīng)用,考查計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | -$\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{4}{3}$ | C. | -$\frac{3}{4}$ | D. | -$\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com