13.已知函數(shù)$f(x)=x+\frac{1}{x}$,則函數(shù)y=f(x)的大致圖象為(  )
A.B.C.D.

分析 利用函數(shù)的定義域和函數(shù)奇偶性以及函數(shù)的零點即可判斷.

解答 解:f(x)的定義域為(-∞,0)∪(0,+∞),
f(-x)=-f(x),即函數(shù)f(x)為奇函數(shù),排除,B,D,
令f(x)=0,即x+$\frac{1}{x}$=0,得$\frac{{x}^{2}+1}{x}$=0,則方程無解,即函數(shù)f(x)無零點,排除C
故選:A.

點評 本題考查了函數(shù)圖象的識別,關(guān)鍵是判斷函數(shù)的奇偶性和函數(shù)的零點,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

3.在△ABC中,角A,B,C的對邊分別為a,b,c,若a2=b2+$\frac{1}{4}{c^2}$,則$\frac{acosB}{c}$=$\frac{5}{8}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.執(zhí)行如圖所示的程序框圖,若輸出s=15,則框圖中①處可以填入k<4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.在下列函數(shù)中既是奇函數(shù),又是在區(qū)間(0,+∞)上單調(diào)遞減的函數(shù)為( 。
A.$y=ln\frac{1}{|x|}$B.y=x-1C.$y={({\frac{1}{2}})^x}$D.y=x3+x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.若三棱錐的一條棱長為x,其余棱長均為1,則該三棱錐的體積( 。
A.有最大值無最小值B.有最小值無最大值
C.既有最大值又有最小值D.既無最大值也無最小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.在直角坐標系中,如果不同的兩點A(a,b),B(-a,-b)都在函數(shù)y=f(x)的圖象上,那么稱[A,B]為函數(shù)f(x)的一組關(guān)于原點的中心對稱點([A,B]與[B,A]看作同一組),函數(shù)g(x)=$\left\{\begin{array}{l}{sin\frac{π}{2}x,x≤0}\\{lo{g}_{2}(x+1),x>0}\end{array}\right.$,關(guān)于原點的中心對稱點的組數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)$f(x)=\frac{lnx}{x}$.
(Ⅰ)記函數(shù)$F(x)={x^2}-x•f(x)({x∈[{\frac{1}{2},2}]})$,求函數(shù)F(x)的最大值;
(Ⅱ)記函數(shù)$H(x)=\left\{\begin{array}{l}\frac{x}{2e},x≥s\\ f(x),0<x<s\end{array}\right.$若對任意實數(shù)k,總存在實數(shù)x0,使得H(x0)=k成立,求實數(shù)s的取值集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知f(x)=m(x-m)(x+m+3)在區(qū)間[1,+∞)上的值恒為負數(shù),且在區(qū)間(-∞,-4)上存在x0使得f(x0)>0,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知{an}是等差數(shù)列,{bn}是各項均為正數(shù)的等比數(shù)列,若a1=b1=1,a1+a2+a3=a5,b1+b2+b3=a4,則a5+b5=( 。
A.10B.15C.20D.25

查看答案和解析>>

同步練習冊答案