18.在直角坐標(biāo)系中,如果不同的兩點(diǎn)A(a,b),B(-a,-b)都在函數(shù)y=f(x)的圖象上,那么稱[A,B]為函數(shù)f(x)的一組關(guān)于原點(diǎn)的中心對(duì)稱點(diǎn)([A,B]與[B,A]看作同一組),函數(shù)g(x)=$\left\{\begin{array}{l}{sin\frac{π}{2}x,x≤0}\\{lo{g}_{2}(x+1),x>0}\end{array}\right.$,關(guān)于原點(diǎn)的中心對(duì)稱點(diǎn)的組數(shù)為( 。
A.0B.1C.2D.3

分析 利用定義,只要求出g(x)=sin$\frac{π}{2}x$,x≤0,關(guān)于原點(diǎn)對(duì)稱的函數(shù)h(x)=sin$\frac{π}{2}x$,x>0,觀察h(x)與g(x)=log2(x+1),x>0的交點(diǎn)個(gè)數(shù),即為中心對(duì)稱點(diǎn)的組數(shù).

解答 解:由題意可知g(x)=sin$\frac{π}{2}x$,x≤0,則函數(shù)g(x)=sin$\frac{π}{2}x$,x≤0,
關(guān)于原點(diǎn)對(duì)稱的函數(shù)為h(x)=sin$\frac{π}{2}x$,x>0,
則坐標(biāo)系中分別作出函數(shù)h(x)=sin$\frac{π}{2}x$,x>0,g(x)=log2(x+1),x>0的圖象如圖,
由圖象可知,兩個(gè)圖象的交點(diǎn)個(gè)數(shù)有1個(gè),
所以函數(shù)g(x)=$\left\{\begin{array}{l}{sin\frac{π}{2}x,x≤0}\\{lo{g}_{2}(x+1),x>0}\end{array}\right.$關(guān)于原點(diǎn)的中心對(duì)稱點(diǎn)的組數(shù)為1組.
故選:B

點(diǎn)評(píng) 本題主要考查函數(shù)的交點(diǎn)問(wèn)題,利用定義先求出函數(shù)關(guān)于原點(diǎn)對(duì)稱的函數(shù),是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在數(shù)列{an}中,a7=16,an-$\frac{1}{2}$an+1=0,則a2的值為(  )
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.下列函數(shù)中,既是偶函數(shù)又在(0,+∞)上單調(diào)遞增的函數(shù)是( 。
A.y=x3B.y=|x+1|C.y=-x2D.y=|x|+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.用邊長(zhǎng)為120cm的正方形鐵皮做一個(gè)無(wú)蓋水箱,先在四周分別截去一個(gè)小正方形,然后把四邊翻轉(zhuǎn)90°角,再焊接成水箱,則水箱的最大容積為( 。
A.120 000 cm3B.128 000 cm3C.150 000 cm3D.158 000 cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知函數(shù)$f(x)=x+\frac{1}{x}$,則函數(shù)y=f(x)的大致圖象為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.隨機(jī)拋擲一枚質(zhì)地均勻的骰子,記正面向上的點(diǎn)數(shù)為a,則函數(shù)f(x)=x2+2ax+2有兩個(gè)不同零點(diǎn)的概率為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖(1),在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分別是AC,AB上的點(diǎn),且DE∥BC,DE=2,將△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如圖(2).
(1)求證:A1C⊥平面BCDE;
(2)平面α過(guò)直線CM和點(diǎn)B,試作出平面α與△A1BE的交線,并說(shuō)明作法;
(3)線段BC上是否存在點(diǎn)P,使平面A1DP與平面A1BE垂直?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.在正三棱錐V-ABC內(nèi),有一半球,其底面與正三棱錐的底面重合,且與正正三棱錐的三個(gè)側(cè)面都相切,若半球的半徑為2,則正三棱錐的體積最小時(shí),其高等于2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.執(zhí)行如圖所示的程序框圖,若要使輸出的y的值等于3,則輸入的x的值可以是( 。
A.1B.2C.8D.9

查看答案和解析>>

同步練習(xí)冊(cè)答案