10.已知函數(shù)f(x)=4x3+ax2+bx+5的圖象在x=1處的切線方程為y=-12x,且f(1)=-12,
(1)求函數(shù)f(x)的解析式和單調(diào)區(qū)間.
(2)求函數(shù)f(x)在[-3,1]上的最值.

分析 (1)根據(jù)導(dǎo)數(shù)的幾何意義求出函數(shù)在x=1處的導(dǎo)數(shù),從而得到切線的斜率,建立等式關(guān)系,再根據(jù)切點(diǎn)在函數(shù)圖象建立等式關(guān)系,解方程組即可求出a和b,從而得到函數(shù)f(x)的解析式;令f′(x)>0和令f′(x)<0,即可求出函數(shù)f(x)的單調(diào)區(qū)間
(2)先求出f′(x)=0的值,根據(jù)極值與最值的求解方法,將f(x)的各極值與其端點(diǎn)的函數(shù)值比較,其中最大的一個(gè)就是最大值,最小的一個(gè)就是最小值.

解答 解:(1)f′(x)=12x2+2ax+b,f′(1)=12+2a+b=-12.①
又x=1,y=-12在f(x)的圖象上,
∴4+a+b+5=-12.②
由①②得a=-3,b=-18,
∴f(x)=4x3-3x2-18x+5.
f′(x)=12x2-6x-18,
令f′(x)<0,得:12x2-6x-18<0,
可得-1<x<$\frac{3}{2}$,
∴函數(shù)f(x)的單調(diào)減區(qū)間為(-1,$\frac{3}{2}$),
令f′(x)>0,得:12x2-6x-18>0,
可得x<-1或x>$\frac{3}{2}$,
∴函數(shù)f(x)的單調(diào)增區(qū)間為(-∞,-1),($\frac{3}{2}$,+∞),
(2)f′(x)=12x2-6x-18=0,得x=-1,x=$\frac{3}{2}$,
f(-1)=16,f($\frac{3}{2}$)=-$\frac{61}{4}$,f(-3)=-76,f(1)=-13.
∴f(x)的最大值為16,最小值為-76.

點(diǎn)評(píng) 本題主要考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,以及利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值等基礎(chǔ)題知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.2015年8月6日凌晨,馬來西亞總理納吉布在吉隆坡確認(rèn),7月29日在法屬留尼汪島發(fā)現(xiàn)的飛機(jī)殘骸來自515天前失聯(lián)的馬航MH370.若一架偵察機(jī)以500米/秒的速度在留尼汪島上空平行于地面勻速飛行時(shí),發(fā)現(xiàn)飛機(jī)殘骸在偵察機(jī)前方且俯角為30°的地面上,半分鐘后,偵察機(jī)發(fā)現(xiàn)飛機(jī)殘骸仍在其前方且俯角為75°的地面上,則偵察機(jī)的飛行高度是3750(1+$\sqrt{3}$)米(保留根號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖所示,在矩形ABCD中,AB=2AD=4,E為CD的中點(diǎn),沿AE將△AED折起,使DB=2$\sqrt{3}$,O,H分別為AE,AB的中點(diǎn),平面BDE∩面DOH=l.
(1)求證:直線OH∥直線l;
(2)求證:平面ADE⊥平面ABCE;
(3)求VD-ABCE

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.將函數(shù)y=cos2x的圖象向右平移$\frac{π}{4}$個(gè)單位長度,得到函數(shù)y=f(x)•sin x的圖象,則f(x)的表達(dá)式可以是( 。
A.f(x)=-2cos xB.f(x)=2cos x
C.f(x)=$\frac{\sqrt{2}}{2}$sin 2xD.f(x)=$\frac{\sqrt{2}}{2}$(sin 2x+cos 2x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.方程ax2-3x-1=0至少有一個(gè)負(fù)數(shù)根,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,-$\frac{9}{4}$)B.(-∞,-$\frac{9}{4}$]C.[-$\frac{9}{4}$,+∞)D.[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若tanα+$\frac{1}{tanα}$=$\frac{10}{3}$,α∈($\frac{π}{4}$,$\frac{π}{2}$),則sin(2α+$\frac{π}{4}$)+2cos$\frac{π}{4}$cos2α的值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)M,P是兩個(gè)非空集合,定義M與P的差集為:M-P={x|x∈M,且x∉P},若M={1,2,3,4},P={3,4,5}則M-P={1,2},M-(M-P)={3,4}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.根據(jù)《商品房銷售管理辦法》規(guī)定,商品房面積誤差絕對(duì)值在3%以內(nèi)(含3%)的,應(yīng)具實(shí)結(jié)算房價(jià)款,用x表示實(shí)際測(cè)得面積,用a表示購房合同標(biāo)注的面積,某人購房后和開發(fā)商具實(shí)結(jié)算房款,則該房屋的實(shí)際測(cè)定的面積滿足如下哪個(gè)不等式(  )
A.|x-a|≤3aB.|x-a|<3aC.|x-a|<0.03aD.|x-a|≤0.03a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如圖,△AOB為等腰直角三角形,OA=1,OC為斜邊AB的高,點(diǎn)P在射線OC上,則$\overrightarrow{AP}$•$\overrightarrow{OP}$的最小值為$-\frac{1}{8}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案