9.已知直線l:3x+2y-6=0與x軸交于點M,與y軸交于點N,且直線l的傾斜角為θ,則∠MNO等于( 。
A.θB.π-θC.$\frac{π}{2}$-θD.θ-$\frac{π}{2}$

分析 由題意,直線l的傾斜角θ=∠MNO+$\frac{π}{2}$,即可得出結(jié)論.

解答 解:由題意,直線l的傾斜角θ=∠MNO+$\frac{π}{2}$,
∴∠MNO=θ-$\frac{π}{2}$,
故選:D.

點評 本題考查直線l的傾斜角,考查學生的計算能力,比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

19.下列是映射的是( 。
A.(1)(2)(3)B.(1)(2)(5)C.(1)(3)(5)D.(1)(2)(3)(5)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.不等式|$\frac{2-x}{3}$|>1的解集是(  )
A.(-∞,-5)∪(-1,+∞)B.(-∞,-5)∪(1,+∞)C.(-∞,-1)∪(5,+∞)D.(-∞,1)∪(5,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.函數(shù)y=3sin2x的最小正周期和最大值分別是( 。
A.π,1B.2π,1C.π,3D.2π,3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.在△ABC中,己知D是AB邊上一點,若$\overrightarrow{AD}$=λ$\overrightarrow{DB}$,$\overrightarrow{CD}$=$\frac{1}{3}$$\overrightarrow{CA}$+μ$\overrightarrow{CB}$(λ,μ∈R),則λ=( 。
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知A(-2,3),B(4,5)兩點,若動點P滿足|PA|=|PB|,則動點P的軌跡方程為3x+y-7=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.給出下列敘述:
①若sin(α+$\frac{π}{3}$)=$\frac{1}{3}$,則cos(α-$\frac{π}{6}$)=$\frac{1}{3}$;
②若α是三角形的一個內(nèi)角,且sinα+cosα=$\frac{1}{5}$,則tanα=-$\frac{4}{3}$;
③不等式tanα≥$\sqrt{3}$的解集為[$\frac{π}{3}$,+∞);
④函數(shù)f(x)=tan(2x+$\frac{π}{3}$)的單調(diào)遞增區(qū)間是(-$\frac{5π}{12}$+$\frac{kπ}{2}$,$\frac{π}{12}$+$\frac{kπ}{2}$)(k∈Z).
其中所有正確敘述的序號是①②④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.求函數(shù)y=12$\sqrt{19-x}$+5$\sqrt{x-10}$的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知△ABC中,∠A=120°,AB=3,BC=7,則AC=5.

查看答案和解析>>

同步練習冊答案