2.已知各項(xiàng)都是正數(shù)的數(shù)列{an}滿足a1=$\frac{3}{2}$,an+1=$\frac{1}{2}{a}_{n}$(4-an),則數(shù)列{an}的通項(xiàng)公式是an=2-${2}^{1-{2}^{n}}$.

分析 依題意,可得$\frac{{({a}_{n}-2)}^{2}}{2}$=2-an+1≥0,進(jìn)一步分析可得an<2,再對(duì)$\frac{{({a}_{n}-2)}^{2}}{2}$=2-an+1兩邊取對(duì)數(shù),利用等比數(shù)列的通項(xiàng)公式與對(duì)數(shù)的運(yùn)算性質(zhì)即可求得答案.

解答 解:因?yàn)閍n+1=$\frac{1}{2}{a}_{n}$(4-an)=-$\frac{({a}_{n}-2)^{2}}{2}$+2,
所以$\frac{{({a}_{n}-2)}^{2}}{2}$=2-an+1≥0,即an+1≤2,
若an+1=2,即$\frac{1}{2}{a}_{n}$(4-an)=2,故an=2,這與a1=$\frac{3}{2}$矛盾,
所以,an+1<2,即an<2,
所以對(duì)$\frac{{({a}_{n}-2)}^{2}}{2}$=2-an+1兩邊取對(duì)數(shù),得lg(2-an+1)=2lg(2-an)-lg2,
變形得:lg(2-an+1)-lg2=2[lg(2-an)-lg2],
∴l(xiāng)g(2-an)-lg2=2n-1•(-2lg2)=-2n•lg2=lg${2}^{-{2}^{n}}$,
解得:an=2-${2}^{1-{2}^{n}}$.
故答案為:an=2-${2}^{1-{2}^{n}}$.

點(diǎn)評(píng) 本題考查數(shù)列遞推關(guān)系式的應(yīng)用,分析得到an<2,且對(duì)$\frac{{({a}_{n}-2)}^{2}}{2}$=2-an+1兩邊取對(duì)數(shù)是關(guān)鍵,也是難點(diǎn),考查等價(jià)轉(zhuǎn)化思想與推理運(yùn)算能力,屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知{an}的通項(xiàng)an=23-n,則a1a2+a2a3+…+anan+1=(  )
A.$\frac{32}{3}$(1-4-nB.$\frac{32}{3}$(1-2-nC.16(1-4-nD.16(1-2-n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)f(x)是定義在(-∞,+∞)上的以2為周期的周期函數(shù)且f(x)為偶函數(shù),在區(qū)間[2,3]上,f(x)=-2(x-3)2+4.
(1)當(dāng)x∈[1,2]時(shí),f(x)的解析式;
(2)若矩形ABCD的兩個(gè)頂點(diǎn)A、B在x軸上,C、D在y=f(x)(0≤x≤2)的圖象上,求這個(gè)矩形面積的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C1:$\frac{{x}^{2}}{2}$+y2=1和圓C2:x2+y2=1,A,B,F(xiàn)分別為橢圓C1左頂點(diǎn)、下頂點(diǎn)和右焦點(diǎn).
(1)點(diǎn)P是曲線C2上位于第二象限的一點(diǎn),若△APF的面積為$\frac{1}{2}$+$\frac{\sqrt{2}}{4}$,求證:AP⊥OP;
(2)點(diǎn)M和N分別是橢圓C1和圓C2上位于y軸右側(cè)的動(dòng)點(diǎn),且直線BN的斜率是直線BM斜率的2倍,證明直線MN恒過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖所示,在矩形ABCD中,AB=1,AD=a,PA⊥平面ABCD,且PA=1,E為AB中點(diǎn),F(xiàn)、Q分別在邊PD、BC上,$\overrightarrow{PF}$=λ$\overrightarrow{PD}$,λ∈(0,1),且僅存在唯一一點(diǎn)Q,使得PQ⊥QD.
(1)當(dāng)λ=$\frac{1}{4}$時(shí),求證:AQ⊥EF;
(2)若平面PAQ與平面EFQ所成銳二面角的大小為60°,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)=e-x+a,g(x)=|lnx|.若x1,x2滿足f(x)=g(x),則x1•x2的取值范圍是($\frac{1}{e}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某城市隨機(jī)監(jiān)測(cè)一年內(nèi)100天的空氣質(zhì)量PM2.5的數(shù)據(jù)API,結(jié)果統(tǒng)計(jì)如下:
API[0,50](50,100](100,150](150,200](200,250](250,+∞)
天數(shù)61222301416
(1)若將API值低于150的天氣視為“好天”,并將頻率視為概率,根據(jù)上述表格,預(yù)測(cè)今年高考6月7日、8日兩天連續(xù)出現(xiàn)“好天”的概率;
(2)API值對(duì)部分生產(chǎn)企業(yè)有著重大的影響,假設(shè)某企業(yè)的日利潤(rùn)f(x)與API值x的函數(shù)關(guān)系為:f(x)=$\left\{\begin{array}{l}40(x≤150)\\ 15(x>150)\end{array}$(單位;萬元),利用分層抽樣的方式從監(jiān)測(cè)的100天中選出10天,再?gòu)倪@10天中任取3天計(jì)算企業(yè)利潤(rùn)之和X,求離散型隨機(jī)變量X的分布列以及數(shù)學(xué)期望和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足S2014>0,S2015<0,對(duì)任意正整數(shù)n,都有|an|≥|ak|,則k的值為( 。
A.1006B.1007C.1008D.1009

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,已知A1,A2,B1,B2分別是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的四個(gè)頂點(diǎn),△A1B1B2的外接圓為圓M,橢圓C過點(diǎn)(-1,$\frac{\sqrt{6}}{3}$),($\frac{3}{2}$,$\frac{1}{2}$).
(1)求橢圓C及圓M的方程;
(2)若點(diǎn)D是圓M劣弧$\widehat{{A}_{1}{B}_{2}}$上一動(dòng)點(diǎn)(點(diǎn)D異于端點(diǎn)A1,B2),直線B1D分別交線段A1B2,橢圓C于點(diǎn)E,G,直線B2G與A1B1交于點(diǎn)F.
(i)求$\frac{G{B}_{1}}{E{B}_{1}}$的最大值;
(ii)E,F(xiàn)兩點(diǎn)的橫坐標(biāo)之和是否為定值?若是,求出該定值;若不是,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案