分析 由題意,可設(shè)x1>1,0<x2<1,則${e}^{-{x}_{1}}$+a=|lnx1|,${e}^{-{x}_{2}}$+a=|lnx2|,兩式相減,結(jié)合指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性,即可得到所求范圍.
解答 解:由題意,可設(shè)x1>1,0<x2<1,
則${e}^{-{x}_{1}}$+a=|lnx1|,${e}^{-{x}_{2}}$+a=|lnx2|,
兩式相減可得${e}^{-{x}_{1}}$-${e}^{-{x}_{2}}$=|lnx1|-|lnx2|
=lnx1+lnx2=ln(x1x2),
由x1>1,0<x2<1,則${e}^{-{x}_{1}}$∈(0,$\frac{1}{e}$),
${e}^{-{x}_{2}}$∈($\frac{1}{e}$,1),則-${e}^{-{x}_{2}}$∈(-1,-$\frac{1}{e}$),
即有${e}^{-{x}_{1}}$-${e}^{-{x}_{2}}$∈(-1,0),
則ln(x1x2)∈(-1,0),
即為x1x2∈($\frac{1}{e}$,1).
故答案為:($\frac{1}{e}$,1).
點(diǎn)評 本題考查函數(shù)的性質(zhì)和運(yùn)用,主要考查指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性的運(yùn)用,考查運(yùn)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-3,1] | B. | [-1,3] | C. | [3,+∞) | D. | (-∞,-1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
x | 0 | 1 | 4 | 5 | 6 | 8 |
y | 1 | 3 | 5 | 6 | 7 | 8 |
A. | 0.95 | B. | 1.00 | C. | 1.10 | D. | 1.15 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com