4.若線性回歸方程中的相關(guān)系數(shù)r=0時(shí),則回歸系數(shù)為(  )
A.$\widehat$=1B.$\widehat$=-1C.$\widehat$=0D.無(wú)法確定

分析 根據(jù)回歸系數(shù)$\stackrel{∧}$與相關(guān)指數(shù)r的計(jì)算公式,即可得出結(jié)論.

解答 解:在回歸系數(shù)$\stackrel{∧}$的計(jì)算公式$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{(x}_{i}-\overline{x}){(y}_{i}-\overline{y})}{{\sum_{i=1}^{n}{(x}_{i}-\overline{x})}^{2}}$中,
與相關(guān)指數(shù)r的計(jì)算公式r=$\frac{\sum_{i=1}^{n}{(x}_{i}-\overline{x}){(y}_{i}-\overline{y})}{\sqrt{{\sum_{i=1}^{n}{(x}_{i}-\overline{x})}^{2}{\sum_{i=1}^{n}{(y}_{i}-\overline{y})}^{2}}}$中,
它們的分子相同,
所以r=0時(shí)回歸系數(shù)$\stackrel{∧}$=0.
故選:C.

點(diǎn)評(píng) 本題考查了回歸系數(shù)與相關(guān)指數(shù)的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=2x+3,若b1=1,bn+1=$\frac{_{n}}{1+_{n}•f(n-1)}$(n∈N*
(1)求b2,b3的值;
(2)求數(shù)列{bn}的通項(xiàng)公式;
(3)記cn=$\root{4}{_{n}}$(n∈N*),試證:c1+c2+…+c2010<89.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.求經(jīng)過(guò)直線l1:x+y-2=0與直線l2:x-y+2=0的交點(diǎn)且平行于直線l3:3x+4y+5=0的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知(2x-$\frac{1}{\root{3}{x}}$)n展開(kāi)式中的二項(xiàng)式系數(shù)之和與各項(xiàng)系數(shù)之和的比值為64.
(1)判斷該展開(kāi)式中有無(wú)x2項(xiàng)?若有,求出它的系數(shù),若沒(méi)有,說(shuō)明理由.
(2)求出展開(kāi)式中所有的有理項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.某種商品第一天上市售價(jià)42元,以后每天提價(jià)2元,并且在開(kāi)始銷售的前10天內(nèi)每天的銷售量與上市天數(shù)的關(guān)系是g(x)=150-5x(其中x表示天數(shù))
(1)寫(xiě)出上市10天內(nèi)商品銷售價(jià)y與天數(shù)x的關(guān)系式;
(2)求該商品在上市10天內(nèi),哪一天的銷售金額最大?并求出最大金額.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知A(-6,0),B(3,6),P(0,3),Q(6,-6),試判斷直線AB與PQ的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.代數(shù)式(3x2+5xy-7y23展開(kāi)后,各項(xiàng)數(shù)字系數(shù)的和是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.函數(shù)y=(m2-m-1)x-5m-3為冪函數(shù),則實(shí)數(shù)m的值為-1或2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)a=log3.14π,b=log${\;}_{\frac{1}{3.14}}$(${π}^{\frac{1}{2006}}$),c=${π}^{-\frac{1}{2006}}$,則(  )
A.a>b>cB.a>c>bC.b>a>cD.c>b>a

查看答案和解析>>

同步練習(xí)冊(cè)答案