2.閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,若輸入x的值為1,則輸出y的值為(  )
A.2B.7C.8D.128

分析 模擬執(zhí)行程序框圖,可得程序框圖的功能是求y=$\left\{\begin{array}{l}{9-x}&{x<2}\\{{2}^{x}}&{x≥2}\end{array}\right.$的值,從而得解.

解答 解:模擬執(zhí)行程序框圖,可得程序框圖的功能是求y=$\left\{\begin{array}{l}{9-x}&{x<2}\\{{2}^{x}}&{x≥2}\end{array}\right.$的值,
若x=1
不滿足條件x≥2,y=8
輸出y的值為8.
故選:C.

點(diǎn)評 本題主要考查了程序框圖和算法,正確得到程序框圖的功能是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若實(shí)數(shù)x,y滿足x2+y2≤1,則|2x+y-2|+|6-x-3y|的最小值是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如題圖,三棱錐P-ABC中,平面PAC⊥平面ABC,∠ABC=$\frac{π}{2}$,點(diǎn)D、E在線段AC上,且AD=DE=EC=2,PD=PC=4,點(diǎn)F在線段AB上,且EF∥BC.
(Ⅰ)證明:AB⊥平面PFE.
(Ⅱ)若四棱錐P-DFBC的體積為7,求線段BC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)f(x)=x-sinx,則f(x)( 。
A.既是奇函數(shù)又是減函數(shù)B.既是奇函數(shù)又是增函數(shù)
C.是有零點(diǎn)的減函數(shù)D.是沒有零點(diǎn)的奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過點(diǎn)A(0,-1),且離心率為$\frac{\sqrt{2}}{2}$.
(Ⅰ)求橢圓E的方程;
(Ⅱ)經(jīng)過點(diǎn)(1,1),且斜率為k的直線與橢圓E交于不同的兩點(diǎn)P,Q(均異于點(diǎn)A),證明:直線AP與AQ斜率之和為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.某幾何體的三視圖如圖所示,則該幾何體的表面積等于( 。
A.8+2$\sqrt{2}$B.11+2$\sqrt{2}$C.14+2$\sqrt{2}$D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.等差數(shù)列{an}中,a2=4,a4+a7=15.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=2${\;}^{{a}_{n}-2}$+n,求b1+b2+b3+…+b10的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若銳角△ABC的面積為$10\sqrt{3}$,且AB=5,AC=8,則BC等于7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=4x-x4,x∈R.
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)曲線y=f(x)與x軸正半軸的交點(diǎn)為P,曲線在點(diǎn)P處的切線方程為y=g(x),求證:對于任意的實(shí)數(shù)x,都有f(x)≤g(x);
(Ⅲ)若方程f(x)=a(a為實(shí)數(shù))有兩個(gè)實(shí)數(shù)根x1,x2,且x1<x2,求證:x2-x1≤-$\frac{a}{3}$+4${\;}^{\frac{1}{3}}$.

查看答案和解析>>

同步練習(xí)冊答案