8.已知函數(shù)f(x)=ax2+bx(a,b為常數(shù)且a≠0)滿足條件f(1+x)=f(1-x),且方程f(x)=x有相等實(shí)根.
f(x)的解析式為f(x)=-$\frac{1}{2}$x2+x.

分析 根據(jù)f(1+x)=f(1-x)可知f(x)關(guān)于直線x=1對(duì)稱,又方程f(x)=x有兩個(gè)相等實(shí)根可知判別式等于零,列出方程組,求出a和b的值,即可得到f(x)的解析式.

解答 解:∵f(1+x)=f(1-x),
∴f(x)的圖象關(guān)于直線x=1對(duì)稱,
∴f(x)的對(duì)稱軸x=-$\frac{2a}$=1,①
又f(x)=x,即ax2+(b-1)x=0有等根,
∴△=(b-1)2=0,②
由①②,解得a=-$\frac{1}{2}$,b=1,
故f(x)的解析式為:f(x)=-$\frac{1}{2}$x2+x.
故答案為:f(x)=-$\frac{1}{2}$x2+x.

點(diǎn)評(píng) 本題考查了函數(shù)解析式的求法,函數(shù)單調(diào)性的性質(zhì),重點(diǎn)研究有關(guān)于二次函數(shù)的性質(zhì).求函數(shù)解析式常見(jiàn)的方法有:待定系數(shù)法,換元法,湊配法,消元法等.對(duì)于二次函數(shù)要注意數(shù)形結(jié)合的應(yīng)用,注意抓住二次函數(shù)的開(kāi)口方向,對(duì)稱軸,以及判別式的考慮.屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)二次函數(shù)f(x)=ax2+bx+c,集合A={x|f(x)=x}.
(1)若A={1,2},且f(0)=2,求函數(shù)f(x)的解析式及f(x)在區(qū)間[-2,2]上的最大值和最小值;
(2)若A={1},且a<0,解關(guān)于x的不等式f(x)>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.某市調(diào)研后對(duì)甲、乙兩個(gè)文科班的數(shù)學(xué)考試成績(jī)進(jìn)行分析,規(guī)定:大于120分為優(yōu)秀,120分以下為非優(yōu)秀,統(tǒng)計(jì)成績(jī)后,得到如下的2×2列聯(lián)表,且已知在甲、乙兩個(gè)文科班全部110人中隨機(jī)抽取1人為優(yōu)秀的概率為$\frac{3}{11}$.
  優(yōu)秀非優(yōu)秀 合計(jì) 
 甲班10   
乙班  30 
 合計(jì)   110
(1)請(qǐng)完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按99%的可靠性要求,能否認(rèn)為“成績(jī)與班級(jí)有關(guān)系”;
(3)若按下面的方法從甲方班優(yōu)秀的學(xué)生中抽取一人:把甲班優(yōu)秀的10名學(xué)生從2到11進(jìn)行編號(hào),先后兩次擲一枚均勻的骰子,出現(xiàn)點(diǎn)數(shù)之和為被抽取人的序號(hào).試求抽到9號(hào)或10號(hào)的概率.
附:參考公式:x2=$\frac{n(ad-bc)^{2}}{(a+b)(b+c)(a+c)(b+d)}$(其中n=a+b+c+d)
P(K2≥k)0.250.150.100.050.0100.005
k1.3232.0722.7063.8456.6357.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若數(shù)列{an},{bn},{cn}滿足cn=$\left\{\begin{array}{l}{{a}_{n},n是奇數(shù)}\\{_{n},n是偶數(shù)}\end{array}$,則稱數(shù)列{cn}是數(shù)列{an}和{bn}的調(diào)和數(shù)列.已知數(shù)列{an}的通項(xiàng)為an=2n+n,數(shù)列{bn}滿足$\left\{\begin{array}{l}{a_n}={b_n},n=1\\{a_{n-1}}+{a_n}=-{b_n},n≥2\end{array}$,若數(shù)列{an}和{bn}的調(diào)和數(shù)列{cn}的前n項(xiàng)和為Tn,則T8+T9=-199.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若關(guān)于x的方程$\frac{x+1}{x+2}$-$\frac{x}{x-1}$=$\frac{ax+2}{(x-1)(x+2)}$無(wú)解,求a的值為(  )
A.-5B.-$\frac{1}{2}$C.-5或-$\frac{1}{2}$D.-5或-$\frac{1}{2}$或-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知數(shù)列{an}為等差數(shù)列,{an}的前n項(xiàng)和為sn,a1=1,a3=5.
(1)求an與sn;
(2)若數(shù)列{bn}為等比數(shù)列,且b1=a1,b2=a2,求bn及數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a1=10,an+1=9Sn+10.
(Ⅰ)求證:{lgan}是等差數(shù)列;
(Ⅱ)設(shè)Tn是數(shù)列$\{\frac{3}{{(lg{a_n})(lg{a_{n+1}})}}\}$的前n項(xiàng)和,求Tn
(Ⅲ)若${T_n}>\frac{1}{2}({m^2}-5m)$在n∈N*上有解,求整數(shù)m的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.如果把一個(gè)球的表面積擴(kuò)大到原來(lái)的2倍,變?yōu)橐粋(gè)新球,那么新球的體積擴(kuò)大到原來(lái)的λ倍,則(  )
A.λ∈(0,1)B.λ∈(1,2)C.λ∈(2,3)D.λ∈(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.集合A,B各有兩個(gè)元素,A∩B中有一個(gè)元素,若集合C同時(shí)滿足:(1)C⊆(A∪B),(2)C?(A∩B),則滿足條件C的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案