分析 把新定義回歸到向量的數(shù)量積的運(yùn)算對(duì)每個(gè)結(jié)論進(jìn)行驗(yàn)證,即可得出結(jié)論.
解答 解:①在α-仿射坐標(biāo)系中,已知$\overrightarrow{a}$=(1,2),$\overrightarrow$=(3,t),若$\overrightarrow{a}$∥$\overrightarrow$,則1×t=2×3,∴t=6,正確;
②在α-仿射坐標(biāo)系中,若$\overrightarrow{OP}$=($\frac{1}{2}$,$\frac{1}{3}$),若$\overrightarrow{OQ}$=($\frac{1}{3}$,-$\frac{1}{2}$),則$\overrightarrow{OP}$•$\overrightarrow{OQ}$=($\frac{1}{2}$$\overrightarrow{{e}_{1}}$+$\frac{1}{3}$$\overrightarrow{{e}_{2}}$)•($\frac{1}{3}$$\overrightarrow{{e}_{1}}$-$\frac{1}{2}$$\overrightarrow{{e}_{2}}$)=$\frac{1}{6}$-$\frac{5}{36}•1•1•cosα$-$\frac{1}{6}$≠0,故不正確;
③在60°-仿射坐標(biāo)系中,若P(2,-1),則|$\overrightarrow{OP}$|=$\sqrt{4+1-2×2×1×\frac{1}{2}}$=$\sqrt{3}$,正確;
故答案為:①③.
點(diǎn)評(píng) 本題為新定義,正確理解題中給出的斜坐標(biāo)并與已知的向量知識(shí)相聯(lián)系是解決問題的關(guān)鍵,屬基礎(chǔ)題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{25}$ | B. | -$\frac{7}{25}$ | C. | 1 | D. | $\frac{\sqrt{7}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3 | B. | -2 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
x | 0 | 1 | 2 | 3 |
y | 1 | 3 | 5 | 7 |
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若該大學(xué)某女生身高為170cm,則她的體重必為58.79kg | |
B. | y與x具有正的線性相關(guān)關(guān)系 | |
C. | 回歸直線過樣本點(diǎn)的中心($\overline x$,$\overline y$) | |
D. | 身高x為解釋變量,體重y為預(yù)報(bào)變量 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com