14.已知函數(shù)f(x)=-x3+2cx2-c2x+1在x=2處有極大值,求實(shí)數(shù)c的值.

分析 由題意可得f′(2)=0,解出c的值之后必須驗(yàn)證是否符合函數(shù)在某一點(diǎn)取得極大值的充分條件.

解答 解:f′(x)=-3x2+4cx-c2
∵函數(shù)f(x)=-x3+2cx2-c2x+1在x=2處有極大值,
∴f′(2)=-3×22+4c×2-c2=0,解得c=2或6.
當(dāng)c=2時(shí),f′(x)=-(3x-2)(x-2),在x=2處取得極大值,符合題意;
當(dāng)c=6時(shí),f′(x)=-3(x-2)(x-6),在x=2處取得極小值,不符合題意,應(yīng)舍去.
因此c=2.

點(diǎn)評(píng) 熟練掌握函數(shù)在某一點(diǎn)取得極大值的充分條件是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=sin(2ωx-$\frac{π}{6}$)+2cos2ωx-1(ω>0),直線x=x1,x=x2是y=f(x)圖象的任意兩條對稱軸,且|x1-x2|的最小值為$\frac{π}{2}$.
(1)求ω的值;
(2)求函數(shù)f(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{2}$]上的值域;
(3)若f(a)=$\frac{1}{3}$,求sin($\frac{7π}{6}$-4a)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知拋物線y2=2x上有四點(diǎn)A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4),點(diǎn)M(3,0),直線AB、CD都過點(diǎn)M,且都不垂直于x軸,直線PQ過點(diǎn)M且垂直于x軸,交AC于點(diǎn)P,交BD于點(diǎn)Q.
(1)求y1y2的值;
(2)求證:MP=MQ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.從直線l:$\frac{x}{12}$+$\frac{y}{8}$=1上任意一點(diǎn)P向橢圓C:$\frac{{x}^{2}}{24}$+$\frac{{y}^{2}}{16}$=1引切線PA,PB,切點(diǎn)分別為A,B,試求線段AB中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=x3-$\frac{3}{2}$ax2+4,其中a>0.
(1)若a=1,求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(2)若f(x)>0對x∈[-1,1]恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知平行四邊形ABCD(如圖1),AB=4,AD=2,∠DAB=60°,E為AB的中點(diǎn),把三角形ADE沿DE折起至A1DE位置,使得A1C=4,F(xiàn)是線段A1C的中點(diǎn)(如圖2).
(1)求證:BF∥面A1DE;
(2)求證:面A1DE⊥面DEBC;
(3)求二面角A1-DC-E的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=ax3+2x2-a2x+b2在x=1處取得極大值,
(1)求a的值及f(x)的單調(diào)區(qū)間;
(2)若關(guān)于x的方程f(x)=$\frac{4}{9}$b在區(qū)間[0,2]上恰有三個(gè)解,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)函數(shù)f(x)=ln$\frac{1}{{a}^{4}x}$-x2+ax(a>0).
(1)若f(x)在定義域上為單調(diào)函數(shù),求a的取值范圍;
(2)設(shè)x1,x2為函數(shù)f(x)的兩個(gè)極值點(diǎn),求f(x1)+f(x2)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=log4(4x+1)-(k-1)x(x∈R)為偶函數(shù).
(1)求常數(shù)k的值,并指出當(dāng)x取何值時(shí)函數(shù)f(x)的值最小?并求出f(x)的最小值;
(2)設(shè)g(x)=log4(a•2x-$\frac{4}{3}$a)(a≠0),且函數(shù)f(x)與g(x)的圖象有公共點(diǎn),求實(shí)數(shù)a的取值范圍
(3)指出實(shí)數(shù)a不同取值時(shí),(2)中函數(shù)圖象交點(diǎn)的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊答案