分析 (Ⅰ)根據(jù)三角函數(shù)的圖象和性質(zhì),分別求出周期,利用正弦函數(shù)的單調(diào)性即可得到結(jié)論.
(Ⅱ)令2kπ-$\frac{π}{2}$≤x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,k∈Z,即可解得函數(shù)f(x)的單調(diào)遞增區(qū)間.
(Ⅲ)由f(α)=$\frac{9}{5}$,可得sin(α+$\frac{π}{3}$)的值,可求范圍$\frac{π}{2}$<$α+\frac{π}{3}$<π,利用同角三角函數(shù)基本關(guān)系式可求cos(α+$\frac{π}{3}$)的值,由于α=(α+$\frac{π}{3}$)-$\frac{π}{3}$,利用兩角差的正弦函數(shù)公式即可計(jì)算得解.
解答 (本題滿分為12分)
解:(Ⅰ)∵若f(x)圖象上相鄰兩條對(duì)稱軸之間的距離為π,
∴三角函數(shù)的周期T=2π,即T=$\frac{2π}{ω}$=2π,即ω=1,
則f(x)=sin(x+φ),
當(dāng)x=$\frac{π}{6}$時(shí),f(x)取得最大值,
即:sin($\frac{π}{6}$+φ)=1,
即:$\frac{π}{6}$+φ=$\frac{π}{2}$+2kπ,k∈Z,
即:φ=$\frac{π}{3}$+2kπ,k∈Z,
∵|φ|≤$\frac{π}{2}$,
∴φ=$\frac{π}{3}$,
則函數(shù)f(x)的解析式為:f(x)=sin(x+$\frac{π}{3}$)+1.
(Ⅱ)令2kπ-$\frac{π}{2}$≤x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,k∈Z,
解得:2kπ-$\frac{5π}{6}$≤x≤2kπ+$\frac{π}{6}$,k∈Z,
可得函數(shù)f(x)的單調(diào)遞增區(qū)間為:[2kπ-$\frac{5π}{6}$,2kπ+$\frac{π}{6}$],k∈Z.
(Ⅲ)∵f(α)=sin(α+$\frac{π}{3}$)+1=$\frac{9}{5}$,可得:sin(α+$\frac{π}{3}$)=$\frac{4}{5}$,
∵$\frac{π}{6}$<α<$\frac{2π}{3}$,可得:$\frac{π}{2}$<$α+\frac{π}{3}$<π,
∴cos(α+$\frac{π}{3}$)=-$\sqrt{1-si{n}^{2}(α+\frac{π}{3})}$=-$\frac{3}{5}$.
∴sinα=sin[(α+$\frac{π}{3}$)-$\frac{π}{3}$]=sin(α+$\frac{π}{3}$)cos$\frac{π}{3}$-cos(α+$\frac{π}{3}$)sin$\frac{π}{3}$=$\frac{4}{5}×\frac{1}{2}$-(-$\frac{3}{5}$)×$\frac{\sqrt{3}}{2}$=$\frac{4+3\sqrt{3}}{10}$.
點(diǎn)評(píng) 本題主要考查了由y=Asin(ωx+φ)的部分圖象確定其解析式,考查了三角函數(shù)的圖象和性質(zhì),考查了三角函數(shù)化簡(jiǎn)求值,利用條件求出函數(shù)的解析式是解決本題的關(guān)鍵,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{3}{4}$ | C. | $\frac{4}{5}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{3}{2}$ | B. | $\frac{3}{2}$ | C. | $\frac{2}{3}$ | D. | -$\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2,4 | B. | 3,4 | C. | 2,5 | D. | 2,6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com