17.函數(shù)$y=\frac{1}{2-x}$的圖象與函數(shù)y=2sin(πx-π)(-2≤x≤6)的圖象所有交點(diǎn)的橫坐標(biāo)之和等于( 。
A.4B.8C.10D.16

分析 分別作出兩個(gè)函數(shù)的圖象,根據(jù)圖象的對稱性即可得到交點(diǎn)坐標(biāo)問題.

解答 解:作出函數(shù)y=$\frac{1}{2-x}$的圖象,則函數(shù)關(guān)于點(diǎn)(2,0)對稱,
y=2sin(πx-π)=-2sin(πx),(-2≤x≤6)
同時(shí)點(diǎn)(2,0)也是函數(shù)y=-sin(πx),(-2≤x≤6)的對稱點(diǎn),
由圖象可知,兩個(gè)函數(shù)在[-2,6]上共有8個(gè)交點(diǎn),兩兩關(guān)于點(diǎn)(2,0)對稱,
設(shè)對稱的兩個(gè)點(diǎn)的橫坐標(biāo)分別為x1,x2
則x1+x2=2×2=4,
∴8個(gè)交點(diǎn)的橫坐標(biāo)之和為4×4=16.
故選:D

點(diǎn)評 本題主要考查函數(shù)交點(diǎn)個(gè)數(shù)以及數(shù)值的計(jì)算,根據(jù)函數(shù)圖象的性質(zhì),利用數(shù)形結(jié)合是解決此類問題的關(guān)鍵,綜合性較強(qiáng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=Asin(ωx+φ)(ω>0,0<φ<π)的一段圖象如圖所示,則過點(diǎn)P(ω,φ),且斜率為A的直線方程是(  )
A.y-$\frac{π}{3}$=$\sqrt{3}$(x-2)B.y-$\frac{2π}{3}$=$\sqrt{3}$(x-4)C.y-$\frac{2π}{3}$=2(x-4)D.y-$\frac{2π}{3}$=2(x-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在△ABC中,角A,B,C所對的邊分別是a,b,c,若$20a•\overrightarrow{BC}+15b•\overrightarrow{CA}+12c•\overrightarrow{AB}=\vec 0$,則△ABC的最小角等于$arccos\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知集合A={y|y=x2},B={x|y=lg(2-x),則A∩B=(  )
A.A、[0,2]B.[0,2)C.(-∞,2]D.(-∞,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在平面直角坐標(biāo)系xoy中,橢圓C的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{2}$=1,直線l與x軸交于點(diǎn)E,與橢圓C交于A,B兩點(diǎn).
(1)若點(diǎn)E的坐標(biāo)為$({\frac{{\sqrt{3}}}{2},0})$,點(diǎn)A在第一象限且橫坐標(biāo)為$\sqrt{3}$,連結(jié)點(diǎn)A與原點(diǎn)O的直線交橢圓C于另一點(diǎn)P,求△PAB的面積;
(2)是否存在點(diǎn)E,使得$\frac{1}{{E{A^2}}}+\frac{1}{{E{B^2}}}$為定值?若存在,請指出點(diǎn)E的坐標(biāo),并求出該定值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)函數(shù)f(x)=|2x-1|-|x+2|.
(Ⅰ)解不等式f(x)>0;
(Ⅱ)若?x0∈R,使得f(x0)+2m2<4m,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.函數(shù)f(x)=ax3-3x2+1,若f(x)=0存在唯一正實(shí)數(shù)根x0,則a取值范圍是(-∞,-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)y=ln(2-x-x2)的單調(diào)遞減區(qū)間為( 。
A.(-∞,-$\frac{1}{2}$]B.(-2,-$\frac{1}{2}$]C.[-$\frac{1}{2}$,+∞)D.(-$\frac{1}{2}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在△ABC中|$\overrightarrow{AB}$+$\overrightarrow{AC}$|=|$\overrightarrow{AB}$-$\overrightarrow{AC}$|,AB=3,AC=4,則$\overrightarrow{BC}$在$\overrightarrow{CA}$方向上的投影是( 。
A.4B.3C.-4D.5

查看答案和解析>>

同步練習(xí)冊答案