18.設(shè)命題p:|x-2|>1;命題q:x2-(2a+1)x+a(a+1)≤0.若?p是?q的必要不充分條件,求實(shí)數(shù)a的取值范圍.

分析 由p:|x-2|>1,解出x的范圍.由q:x2-(2a+1)x+a(a+1)≤0,解出x的范圍.由于?p是?q的必要不充分條件,可得p是q的充分不必要條件.

解答 解:由p:|x-2|>1,
解得x<1或x>3.…(3分)
由q:x2-(2a+1)x+a(a+1)≤0得(x-a)[x-(a+1)]≥0,
解得x≤a或x≥a+1.…(6分)
∵?p是?q的必要不充分條件,∴p是q的充分不必要條件.…(8分)
∴$\left\{\begin{array}{l}a≥1\\ a+1≤3\end{array}\right.$,則1≤a≤2.
∴實(shí)數(shù)a的取值范圍是[1,2].(10分)

點(diǎn)評(píng) 本題考查了不等式的解法、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,已知矩形ABCD中,AB=10,BC=6,將矩形沿對(duì)角線BD把△ABD折起,使A移到A1點(diǎn),且A1在平面BCD上的射影O恰在CD上,即A1O⊥平面DBC.
(Ⅰ)求證:BC⊥A1D;
(Ⅱ)求證:平面A1BC⊥平面A1BD;
(Ⅲ)求點(diǎn)C到平面A1BD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知點(diǎn)M是橢圓$\frac{{y}^{2}}{25}+\frac{{x}^{2}}{9}$=1上一點(diǎn),F(xiàn)1,F(xiàn)2為橢圓的焦點(diǎn),且△F1MF2的面積等于8,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.某公司決定采用技術(shù)改造和投放廣告兩項(xiàng)措施來(lái)獲得更大的收益.通過(guò)對(duì)市場(chǎng)的預(yù)測(cè),當(dāng)對(duì)兩項(xiàng)投入都不大于3(百萬(wàn)元)時(shí),每投入x(百萬(wàn)元) 技術(shù)改造費(fèi),增加的銷(xiāo)售額y1滿足y1=-$\frac{1}{3}$x3+2x2+5x(百萬(wàn)元);每投入x(百萬(wàn)元) 廣告費(fèi)用,增加的銷(xiāo)售額y2滿足y2=-2x2+14x(百萬(wàn)元).現(xiàn)該公司準(zhǔn)備共投入3(百萬(wàn)元),分別用于技術(shù)改造投入和廣告投入,請(qǐng)?jiān)O(shè)計(jì)一種資金分配方案,使得該公司獲得最大收益.(注:收益=銷(xiāo)售額-投入,答案數(shù)據(jù)精確到0.01)(參考數(shù)據(jù):$\sqrt{2}$≈1.414,$\sqrt{3}$≈1.732)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知傾斜角為45°的直線l過(guò)拋物線y2=4x的焦點(diǎn),且與拋物線交于A,B兩點(diǎn),則△OAB(其中O為坐標(biāo)原點(diǎn))的面積為( 。
A.2B.$2\sqrt{2}$C.$3\sqrt{2}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若方程$\frac{x^2}{a+2}$+$\frac{y^2}{a^2}$=1表示焦點(diǎn)在y軸上的橢圓,則實(shí)數(shù)a的取值范圍是(2,+∞)∪(-2,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知$\overrightarrow{a}$=($\sqrt{3}$sinx,cosx),$\overrightarrow$=(sinx,sinx),設(shè)函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$-$\frac{\sqrt{3}}{2}$.
(1)寫(xiě)出函數(shù)f(x)的周期,并求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)求f(x)在區(qū)間[π,$\frac{3π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若α,β為銳角,$cos(\frac{π}{4}+α)=\frac{1}{3},cos(\frac{π}{4}+\frac{β}{2})=\frac{{\sqrt{3}}}{3}$,則$cos(α-\frac{β}{2})$=( 。
A.$\frac{{\sqrt{3}}}{3}$B.$-\frac{{\sqrt{3}}}{3}$C.$-\frac{{\sqrt{6}}}{9}$D.$\frac{{5\sqrt{3}}}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知P是橢圓$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{2}$=1和雙曲線x2-y2=2的一個(gè)交點(diǎn),若F1、F2分別是橢圓的左、右焦點(diǎn),則cos∠F1PF2=90°.

查看答案和解析>>

同步練習(xí)冊(cè)答案