一種放射性元素,最初的質(zhì)量為,按每年衰減.
(1)求年后,這種放射性元素的質(zhì)量的函數(shù)關(guān)系式;
(2)求這種放射性元素的半衰期(質(zhì)量變?yōu)樵瓉淼?img src="http://thumb.zyjl.cn/pic5/tikupic/99/3/t3b2c1.png" style="vertical-align:middle;" />時所經(jīng)歷的時間).(

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

噪聲污染已經(jīng)成為影響人們身體健康和生活質(zhì)量的嚴(yán)重問題.實踐證明,聲音強(qiáng)度(分貝)由公式(為非零常數(shù))給出,其中為聲音能量.
(1)當(dāng)聲音強(qiáng)度滿足時,求對應(yīng)的聲音能量滿足的等量關(guān)系式;
(2)當(dāng)人們低聲說話,聲音能量為時,聲音強(qiáng)度為30分貝;當(dāng)人們正常說話,聲音能量為時,聲音強(qiáng)度為40分貝.當(dāng)聲音能量大于60分貝時屬于噪音,一般人在100分貝~120分貝的空間內(nèi),一分鐘就會暫時性失聰.問聲音能量在什么范圍時,人會暫時性失聰.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點,點在曲線:上.
(1)若點在第一象限內(nèi),且,求點的坐標(biāo);
(2)求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

對定義在上,并且同時滿足以下兩個條件的函數(shù)稱為函數(shù)。
①對任意的,總有
②當(dāng)時,總有成立。
已知函數(shù)是定義在上的函數(shù)。
(1)試問函數(shù)是否為函數(shù)?并說明理由;
(2)若函數(shù)函數(shù),求實數(shù)的值;
(3)在(2)的條件下,討論方程解的個數(shù)情況。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

定義,,.
(1)比較的大。
(2)若,證明:;
(3)設(shè)的圖象為曲線,曲線處的切線斜率為,若,且存在實數(shù),使得,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)是常數(shù)且
(1)若函數(shù)的一個零點是1,求的值;
(2)求上的最小值;
(3)記,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某工廠某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本為,當(dāng)年產(chǎn)量不足80千件時,(萬元).當(dāng)年產(chǎn)量不小于80千件時,(萬元).每件商品售價為500元.通過市場分析,該廠生產(chǎn)的商品能全部售完.
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某工廠某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本為,當(dāng)年產(chǎn)量不足80千件時,(萬元).當(dāng)年產(chǎn)量不小于80千件時,(萬元).每件商品售價為0.05萬元.通過市場分析,該廠生產(chǎn)的商品能全部售完.
(Ⅰ)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(Ⅱ)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù)
(1)設(shè)函數(shù),若方程上有且僅一個實根,求實數(shù) 的取值范圍;
(2)當(dāng)時,求函數(shù)上的最大值.

查看答案和解析>>

同步練習(xí)冊答案