分析 把圓的方程化為標(biāo)準(zhǔn)方程,找出圓心坐標(biāo)和半徑r,直線與圓相切,所以圓心到直線的距離d等于半徑r,分類討論,利用點(diǎn)到直線的距離公式表示出d,讓d等于r列出關(guān)于k的方程,求出方程的解即可確定出切線方程,綜上得到兩條滿足題意的切線方程.
解答 解:圓x2+(y+1)2=25的圓心坐標(biāo)為(0,-1),半徑r=5,
斜率不存在時(shí),此時(shí)過(guò)點(diǎn)M(-5,0)的切線方程為x=-5;
設(shè)切線的斜率為k,由切線過(guò)(-5,0),得到切線方程為:y=k(x+5),即kx-y+5k=0,
則有圓心到切線的距離d=$\frac{|1+5k|}{\sqrt{{k}^{2}+1}}$=r=5,解得k=$\frac{12}{5}$,
所以切線方程為:12x-5y+60=0,
綜上,所求切線的方程為x=-5或12x-5y+60=0.
故答案為:x=-5或12x-5y+60=0.
點(diǎn)評(píng) 此題考查了直線與圓相切滿足的關(guān)系,同時(shí)要求學(xué)生靈活運(yùn)用點(diǎn)到直線的距離公式,會(huì)把圓的方程化為標(biāo)準(zhǔn)方程,會(huì)從圓的標(biāo)準(zhǔn)方程找出圓心坐標(biāo)和圓的半徑,掌握當(dāng)直線與圓相切時(shí),圓心到直線的距離等于圓的半徑是解本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)=lnx2,g(x)=2lnx | B. | f(x)=x,g(x)=($\sqrt{x}$)2 | ||
C. | f(x)=cosx•tanx,g(x)=sinx | D. | f(x)=x2,g(x)=$\sqrt{{x}^{4}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | i≥6? | B. | i>6? | C. | i≥4? | D. | i>4? |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ($\frac{1}{3}$,1,1) | B. | (-$\frac{1}{2}$,-$\frac{3}{2}$,1) | C. | (-$\frac{1}{2}$,$\frac{3}{2}$,-1) | D. | ($\sqrt{2}$,-3,-2$\sqrt{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,2) | B. | (2,3) | C. | (3,4) | D. | (5,6) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com