分析 先將問題轉(zhuǎn)化成二項(xiàng)式的展開式中沒有常數(shù)項(xiàng),利用二項(xiàng)展開式的通項(xiàng)公式求出第r+1項(xiàng),令x的指數(shù)為2時(shí)方程無解,檢驗(yàn)求得n的值.
解答 解:∵(x+1)2(x+$\frac{1}{{x}^{3}}$)n=(1+2x+x2)(x+$\frac{1}{{x}^{3}}$)n 的展開式中沒有x2項(xiàng),
∴(x+$\frac{1}{{x}^{3}}$)n 的展開式中不含常數(shù)項(xiàng),不含x項(xiàng),不含x2項(xiàng).
∵(x+$\frac{1}{{x}^{3}}$)n 的展開式中展開式的通項(xiàng)為Tr+1=Cnr xn-r x-3r=Cnrxn-4r,r=0,1,2,3…n,
方程n-4r=0,n-4r=1,n-4r=2,當(dāng)n∈N*,5≤n≤8時(shí),無解,檢驗(yàn)可得n=7,
故答案為:7.
點(diǎn)評 本題考查數(shù)學(xué)中的等價(jià)轉(zhuǎn)化的能力和利用二項(xiàng)展開式的通項(xiàng)公式解決二項(xiàng)展開式的特定項(xiàng),屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 144 | B. | 192 | C. | 228 | D. | 264 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 18 | B. | 24 | C. | 64 | D. | 81 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{7}}{2}$ | B. | $\frac{\sqrt{65}}{8}$ | C. | $\frac{8\sqrt{7}}{21}$ | D. | $\frac{\sqrt{35}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [2${\;}^{-\frac{1}{3}}$,1) | B. | (0,2${\;}^{-\frac{1}{3}}$] | C. | (2${\;}^{\frac{1}{3}}$,3) | D. | (1,2${\;}^{\frac{1}{3}}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | P?Q?R | B. | P?R?Q | C. | Q?P?R | D. | R?P?Q |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com