5.一個空間幾何體的三視圖及部分?jǐn)?shù)據(jù)如圖所示.
(1)請畫出該幾何體的直觀圖;
(2)求它的表面積和體積.

分析 (1)利用三視圖直接畫出直觀圖即可.
(2)利用三視圖的數(shù)據(jù),直接求解幾何體的表面積以及體積即可.

解答 解:(1)該幾何體的直觀圖為:
 (6分)
(2)∵AC=2
∴表面積$S=3+\sqrt{3}+2\sqrt{3}+2×\frac{1}{2}×\sqrt{3}=3+4\sqrt{3}$
體積$V={S_{△ABC}}•A{A_1}=\frac{{\sqrt{3}}}{2}×\sqrt{3}=\frac{3}{2}$(12分)

點評 本題考查直觀圖與幾何體的三視圖的關(guān)系,幾何體的表面積以及體積的求法,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.不等式(x-3)-2>(2x+1)-2的解集為{x|x>$\frac{2}{3}$或x<-4且x≠3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.直線l是雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右準(zhǔn)線,以原點O為圓心且過雙曲線焦點的圓被直線l分成弧長為2:1的兩段,則雙曲線的離心率為( 。
A.$\sqrt{5}$B.$\sqrt{3}$C.$\frac{{\sqrt{2}}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在四棱錐P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2$\sqrt{2}$,∠PAB=60°.
(1)證明AD⊥平面PAB;
(2)求異面直線PC與AD所成的角的正切值;
(3)求二面角P-BD-A的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在四面體ABCD中,已知∠ABD=∠CBD=60°,AB=BC=2,
(Ⅰ) 求證:AC⊥BD;
(Ⅱ)若平面ABD⊥平面CBD,且BD=$\frac{5}{2}$,求二面角C-AD-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在三棱柱ABC-A1B1C1中,△ABC是邊長為2的正三角形,側(cè)面BB1C1C是矩形,D、E分別是線段BB1、AC1的中點.
(1)求證:DE∥平面A1B1C1;
(2)若平面ABC⊥平面BB1C1C,BB1=4,求三棱錐A-DCE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖AB是圓O的直徑,AF⊥AB,弦CD交AB、AF分別于E、F,交圓于點C.
(1)證明:AF•DA=AC•DF
(2)若圓的半徑為2,OE=EB=$\frac{1}{2}$AF,ED=$\frac{3}{2}$,求CF的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.如圖,設(shè)△ABC和△CDE都是等邊三角形,且∠EBD=62°,則∠AEB的度數(shù)為122°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)四邊形ABCD內(nèi)接于圓,另一圓的圓心在邊AB上并且與四邊形的其余三邊相切.證明:AD+BC=AB.

查看答案和解析>>

同步練習(xí)冊答案