分析 (1)明確二次函數(shù)的對(duì)稱軸,區(qū)間的端點(diǎn)值,由a的范圍明確函數(shù)的單調(diào)性,結(jié)合已知以及三角不等式變形所求得到證明;
(2)討論a=b=0以及分析M(a,b)≤2得到-3≤a+b≤1且-3≤b-a≤1,進(jìn)一步求出|a|+|b|的求值.
解答 解:(1)由已知可得f(1)=1+a+b,f(-1)=1-a+b,對(duì)稱軸為x=-$\frac{a}{2}$,
因?yàn)閨a|≥2,所以$-\frac{a}{2}≤-1$或$-\frac{a}{2}$≥1,
所以函數(shù)f(x)在[-1,1]上單調(diào),
所以M(a,b)=max{|f(1),|f(-1)|}=max{|1+a+b|,|1-a+b|},
所以M(a,b)≥$\frac{1}{2}$(|1+a+b|+|1-a+b|)≥$\frac{1}{2}$|(1+a+b)-(1-a+b)|≥$\frac{1}{2}$|2a|=|a|≥2;
(2)當(dāng)a=b=0時(shí),|a|+|b|=0又|a|+|b|≥0,所以0為最小值,符合題意;
又對(duì)任意x∈[-1,1].有-2≤x2+ax+b≤2,
得到-3≤a+b≤1且-3≤b-a≤1,-2≤$\frac{4b-{a}^{2}}{4}$≤2,
易知(|a|+|b|)max=max{|a-b|,|a+b|}=3,在b=-1,a=2時(shí)符合題意,
所以|a|+|b|的最大值為3.
點(diǎn)評(píng) 本題考查了二次函數(shù)閉區(qū)間上的最值求法;解答本題的關(guān)鍵是正確理解M(a,b)是|f(x)|在區(qū)間[-1,1]上的最大值,以及利用絕對(duì)值不等式變形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $-\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8cm3 | B. | 12cm3 | C. | $\frac{32}{3}c{m^3}$ | D. | $\frac{40}{3}c{m^3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{4}$+$\frac{1}{2π}$ | B. | $\frac{1}{2}$+$\frac{1}{π}$ | C. | $\frac{1}{4}$-$\frac{1}{2π}$ | D. | $\frac{1}{2}$-$\frac{1}{π}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com