8.已知E,F(xiàn)為雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(0<a<b)的左右焦點(diǎn),拋物線y2=2px(p>0)與雙曲線有公共的焦點(diǎn)F,且與雙曲線交于A,B不同兩地兩點(diǎn),若|AF|=$\frac{4}{5}$|BE|,則雙曲線的離心率為( 。
A.4-$\sqrt{7}$B.4-$\sqrt{3}$C.4+$\sqrt{3}$D.4+$\sqrt{7}$

分析 根據(jù)雙曲線的定義求出|BE|=10a,|BF|=8a,結(jié)合拋物線的定義求出交點(diǎn)B的縱坐標(biāo),結(jié)合直角三角形的邊角關(guān)系建立方程進(jìn)行求解即可.

解答 解:根據(jù)雙曲線和拋物線的對(duì)稱(chēng)性得|BF|=|AF|=$\frac{4}{5}$|BE|,
∵|BE|-|BF|=2a,
∴|BE|-$\frac{4}{5}$|BE|=$\frac{1}{5}$|BE|=2a,
則|BE|=10a,|BF|=8a,
∵拋物線y2=2px(p>0)與雙曲線有公共的焦點(diǎn)F,
∴$\frac{p}{2}$=c,且x=-c是拋物線的準(zhǔn)線,
則|BD|=|BF|=8a,
設(shè)B(x,y),則由拋物線的性質(zhì)得x+c=8a,即x=8a-c,
代入拋物線方程y2=2px=4cx得y2=4c(8a-c),
則|DE|2=y2=4c(8a-c),
在直角三角形BDE中,
BE2=DE2+BD2,
即100a2=64a2+4c(8a-c),
即36a2-32ac+4c2=0,
即c2-8ac+9a2=0,
解e2-8e+9=0,
得e=$\frac{8±\sqrt{64-36}}{2}$=$\frac{8±\sqrt{28}}{2}$=4±$\sqrt{7}$,
∵0<a<b,
∴e=$\frac{c}{a}$=$\sqrt{\frac{{a}^{2}+^{2}}{{a}^{2}}}$>$\sqrt{\frac{2{a}^{2}}{{a}^{2}}}$=$\sqrt{2}$,
∴e=4+$\sqrt{7}$,
故選:D.

點(diǎn)評(píng) 本題主要考查雙曲線離心率的計(jì)算,根據(jù)拋物線和雙曲線的定義建立方程關(guān)系,求出a,c的關(guān)系是解決本題的關(guān)鍵.綜合性較強(qiáng),有一定的難度.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.計(jì)算$\frac{3x}{{x}^{2}-2x-3}$-$\frac{1}{x+1}$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,已知邊長(zhǎng)為6的菱形ABCD,∠ABC=120°,AC與BD相交于O,將菱形ABCD沿對(duì)角線AC折起,使BD=3$\sqrt{2}$.

(1)若M是BC的中點(diǎn),求證:在三棱錐D-ABC中,直線OM與平面ABD平行;
(2)求二面角A-BD-O的余弦值;
(3)在三棱錐D-ABC中,設(shè)點(diǎn)N是BD上的一個(gè)動(dòng)點(diǎn),試確定N點(diǎn)的位置,使得CN=4$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.曲線y=a$\sqrt{x}$(a>0)與曲線y=ln$\sqrt{x}$有公共點(diǎn),且在公共點(diǎn)處的切線相同,則a的值為( 。
A.eB.e2C.e-2D.e-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.在△ABC中,a=2$\sqrt{3}$m,b=4m(m>0),如果三角形有解,則A的取值范圍是( 。
A.0°<A≤60°B.0°<A<30°C.0°<A<90°D.30°<A<60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.一名顧客計(jì)劃到某商場(chǎng)購(gòu)物,他有三張商場(chǎng)的優(yōu)惠劵,商場(chǎng)規(guī)定每購(gòu)買(mǎi)一件商品只能使用一張優(yōu)惠券.根據(jù)購(gòu)買(mǎi)商品的標(biāo)價(jià),三張優(yōu)惠券的優(yōu)惠方式不同,具體如下:
優(yōu)惠劵A:若商品標(biāo)價(jià)超過(guò)50元,則付款時(shí)減免標(biāo)價(jià)的10%;
優(yōu)惠劵B:若商品標(biāo)價(jià)超過(guò)100元,則付款時(shí)減免20元;
優(yōu)惠劵C:若商品標(biāo)價(jià)超過(guò)100元,則付款時(shí)減免超過(guò)100元部分的18%.
某顧客想購(gòu)買(mǎi)一件標(biāo)價(jià)為150元的商品,若想減免錢(qián)款最多,則應(yīng)該使用B優(yōu)惠劵(填A(yù),B,C);若顧客想使用優(yōu)惠券C,并希望比優(yōu)惠券A和B減免的錢(qián)款都多,則他購(gòu)買(mǎi)的商品的標(biāo)價(jià)應(yīng)高于225元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知向量$\overrightarrow{a}$=(1,2),向量$\overrightarrow$=(2,m),若$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$垂直,則實(shí)數(shù)m的值為-$\frac{7}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.函數(shù)f(x)=$\frac{{\sqrt{4-{x^2}}}}{{{{log}_2}x-1}}$的定義域?yàn)椋?,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知a,b∈R,i是虛數(shù)單位,若(2+i)(1-bi)=a+i,則a+b=2.

查看答案和解析>>

同步練習(xí)冊(cè)答案