A. | 4-$\sqrt{7}$ | B. | 4-$\sqrt{3}$ | C. | 4+$\sqrt{3}$ | D. | 4+$\sqrt{7}$ |
分析 根據(jù)雙曲線的定義求出|BE|=10a,|BF|=8a,結(jié)合拋物線的定義求出交點(diǎn)B的縱坐標(biāo),結(jié)合直角三角形的邊角關(guān)系建立方程進(jìn)行求解即可.
解答 解:根據(jù)雙曲線和拋物線的對(duì)稱(chēng)性得|BF|=|AF|=$\frac{4}{5}$|BE|,
∵|BE|-|BF|=2a,
∴|BE|-$\frac{4}{5}$|BE|=$\frac{1}{5}$|BE|=2a,
則|BE|=10a,|BF|=8a,
∵拋物線y2=2px(p>0)與雙曲線有公共的焦點(diǎn)F,
∴$\frac{p}{2}$=c,且x=-c是拋物線的準(zhǔn)線,
則|BD|=|BF|=8a,
設(shè)B(x,y),則由拋物線的性質(zhì)得x+c=8a,即x=8a-c,
代入拋物線方程y2=2px=4cx得y2=4c(8a-c),
則|DE|2=y2=4c(8a-c),
在直角三角形BDE中,
BE2=DE2+BD2,
即100a2=64a2+4c(8a-c),
即36a2-32ac+4c2=0,
即c2-8ac+9a2=0,
解e2-8e+9=0,
得e=$\frac{8±\sqrt{64-36}}{2}$=$\frac{8±\sqrt{28}}{2}$=4±$\sqrt{7}$,
∵0<a<b,
∴e=$\frac{c}{a}$=$\sqrt{\frac{{a}^{2}+^{2}}{{a}^{2}}}$>$\sqrt{\frac{2{a}^{2}}{{a}^{2}}}$=$\sqrt{2}$,
∴e=4+$\sqrt{7}$,
故選:D.
點(diǎn)評(píng) 本題主要考查雙曲線離心率的計(jì)算,根據(jù)拋物線和雙曲線的定義建立方程關(guān)系,求出a,c的關(guān)系是解決本題的關(guān)鍵.綜合性較強(qiáng),有一定的難度.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | e | B. | e2 | C. | e-2 | D. | e-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0°<A≤60° | B. | 0°<A<30° | C. | 0°<A<90° | D. | 30°<A<60° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com