12.如圖,點(diǎn)A、B、C都在⊙O上,過點(diǎn)C的切線交AB的延長線于點(diǎn)D,若AB=6,BC=3,CD=4,則線段AC的長為6.

分析 根據(jù)圓的切線和割線,利用切割線定理得到與圓有關(guān)的比例線段,代入已知線段的長度求出DB的長,根據(jù)三角形的兩個(gè)角對(duì)應(yīng)相等,得到兩個(gè)三角形全等,對(duì)應(yīng)線段成比例,得到要求的線段的長度.

解答 解:∵過點(diǎn)C的切線交AB的延長線于點(diǎn)D,
∴DC是圓的切線,DBA是圓的割線,
根據(jù)切割線定理得到DC2=DB•DA,
∵AB=6,CD=4,
∴16=DB(DB+6)
∴DB=2,
由題意知∠D=∠D,∠BCD=∠A
∴△DBC∽△DCA,
∴$\frac{DC}{DA}=\frac{BC}{CA}$
∴AC=$\frac{8×3}{4}$=6,
故答案為:6.

點(diǎn)評(píng) 本題考查與圓有關(guān)的比例線段,考查三角形的相似的判定定理與性質(zhì)定理,本題解題的關(guān)鍵是根據(jù)圓中的比例式,代入已知線段的長度求出未知的線段的長度,本題是一個(gè)基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知實(shí)數(shù)x∈[-1,1],y∈[0,2],則點(diǎn)P(x,y)落在不等式組$\left\{\begin{array}{l}2x-y+2≥0\\ x-2y+1≤0\\ x+y-2≤0\end{array}\right.$所表示的區(qū)域內(nèi)的概率為$\frac{3}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.己知等差數(shù)列{an}的首項(xiàng)為a1,公差為d,其前n項(xiàng)和為Sn,若直線y=a1x與圓(x-1)2+y2=1的兩個(gè)交點(diǎn)關(guān)于直線x+y+d=0對(duì)稱,則Sn=( 。
A.n2B.-n2C.$\frac{-{n}^{2}+3n}{2}$D.n2-2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.觀察下列各式:55=3125,56=15625,57=78125,…,則52015的末四位數(shù)字為( 。
A.3125B.5625C.0625D.8125

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.對(duì)于復(fù)數(shù)a,b,c,d,若集合S={a,b,c,d}具有性質(zhì)“對(duì)任意x,y∈S,必有xy∈S”,則當(dāng)$\left\{\begin{array}{l}{a^2}=1\\ b=1\\{c^2}=a\end{array}\right.$時(shí),b+c+d等于( 。
A.1B.-1C.0D.i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=x3-4x2+5x-4.
(1)求曲線f(x)在點(diǎn)(2,f(2))處的切線方程;
(2)求經(jīng)過點(diǎn)A(2,-2)的曲線f(x)的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知過定點(diǎn)P(-2,0)的直線l與曲線y=$\sqrt{2-{x}^{2}}$相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),當(dāng)△AOB的面積取到最大值時(shí),直線l的傾斜角為30°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.一個(gè)盒子裝有六張卡片,上面分別寫著如下六個(gè)定義域?yàn)镽的函數(shù):f1(x)=x+1,f2(x)=x2,${f_3}(x)={log_2}({\sqrt{{x^2}+1}+x})$,f4(x)=sinx,f5(x)=cosx+|x|,f6(x)=x•sinx-2.
(1)現(xiàn)從盒子中任取兩張卡片,將卡片上的函數(shù)相加得一個(gè)新函數(shù),求所得函數(shù)是奇函數(shù)的概率;
(2)現(xiàn)從盒子中進(jìn)行逐一抽取卡片,且每次取出后均不放回,若取到一張記有偶函數(shù)的卡片則停止抽取,否則繼續(xù)進(jìn)行,求抽取次數(shù)ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知實(shí)數(shù)x,y滿足$\left\{{\begin{array}{l}{x+y≥2}\\{x-y≤2}\\{0≤y≤3}\end{array}}\right.$,則z=x-2y的取值范圍是[-7,2].

查看答案和解析>>

同步練習(xí)冊答案