20.化簡:$\frac{cos(\frac{π}{2}+α)•cos(2π-α)•sin(-α+\frac{3π}{2})}{sin(-π-α)•sin(\frac{3π}{2}+α)}$.

分析 運(yùn)用誘導(dǎo)公式即可化簡.

解答 解:$\frac{cos(\frac{π}{2}+α)•cos(2π-α)•sin(-α+\frac{3π}{2})}{sin(-π-α)•sin(\frac{3π}{2}+α)}$=$\frac{(-sinα)•cosα•(-cosα)}{sinα•(-cosα)}$=-cosα.

點(diǎn)評 本題主要考查了誘導(dǎo)公式在化簡求值中的應(yīng)用,屬于基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C:$\frac{y^2}{a^2}+\frac{x^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,其四個頂點(diǎn)組成的菱形的面積是4$\sqrt{2}$,O為坐標(biāo)原點(diǎn),若點(diǎn)A在直線x=2上,點(diǎn)B在橢圓C上,且OA⊥OB.
(Ⅰ) 求橢圓C的方程;
(Ⅱ)求線段AB長度的最小值;
(Ⅲ)試判斷直線AB與圓x2+y2=2的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.計算:(1)lg2+lg5=1;
(2)log36-log32=1;
(3)log525=2;
(4)3log82=1;
(5)$\frac{1}{2}$lg4+lg5=1;
(6)log575-2log5$\sqrt{3}$=2;
(7)log5$\sqrt{3}$•2log3$\sqrt{5}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.拋物線y2=4x的焦點(diǎn)為F,過點(diǎn)N(3,0)的直線與拋物線相交于A,B兩點(diǎn),與拋物線的準(zhǔn)線相交于C,|BF|=3,則△BCF與△ACF的面積之比為$\frac{6}{11}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知三個數(shù)a1,a2,a3成等差數(shù)列,其和為72,且a3=3,求這三個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在如圖所示的坐標(biāo)平面的可行域內(nèi)(陰影部分且包括邊界),若目標(biāo)函數(shù)z=x+ay取得最小值的最優(yōu)解有無數(shù)個,則$\frac{y}{x-a}$的最大值是( 。
A.$\frac{2}{7}$B.$\frac{2}{3}$C.$\frac{1}{6}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若直線f(x)=$\frac{1}{2}$x+t經(jīng)過點(diǎn)P(1,0),且f(a)+f(2b)+f(3c)=-$\frac{1}{2}$,則當(dāng)3a+2b+c=2時,a2+2b2+3c2取得最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若曲線C1:y=$\frac{a}{2}$x2(a>0)與曲線C2:y=ex存在公共切線,則實數(shù)a的取值范圍是[$\frac{{e}^{2}}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,A、B、C為一個平行四邊形的三個頂點(diǎn),且A、B、C三點(diǎn)的坐標(biāo)分別為(3,3)、(6,4)、(4,6).
(1)請直接寫出這個平行四邊形的第四個頂點(diǎn)的坐標(biāo);
(2)求這個平行四邊形的面積.

查看答案和解析>>

同步練習(xí)冊答案