分析 直線mx+(1-m)y+2m-2=0可化為y-2+m(x-y+2)=0,根據x=0,y=2時方程恒成立,可知直線過定點P的坐標.
解答 解:直線mx+(1-m)y+2m-2=0可化為y-2+m(x-y+2)=0,
得$\left\{\begin{array}{l}{y-2=0}\\{x-y+2=0}\end{array}\right.$,解得x=0,y=2.
∴直線mx+(1-m)y+2m-2=0(m∈R)恒過定點P(0,2).
故答案為:(0,2).
點評 本題考查的知識點是恒過定義的直線,解答的關鍵是將參數(shù)分離,化為Am+B=0的形式(其中m為參數(shù)),令A,B=0可得答案.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,$\frac{1}{5}$) | B. | (0,$\frac{1}{3}$) | C. | ($\frac{1}{5}$,$\frac{1}{3}$) | D. | ($\frac{1}{3}$,1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | 2$\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{n}{2(n+2)}$ | B. | $\frac{n}{2(n+1)}$ | C. | $\frac{2n}{n+2}$ | D. | $\frac{n}{n+1}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | ±1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
賠付金額(元) | 0 | 1000 | 2000 | 3000 | 4000 |
車輛數(shù)(輛) | 500 | 130 | 100 | 150 | 120 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com