7.函數(shù)y=x2+2ax+1在區(qū)間(-6,6)上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是(-∞,-6].

分析 由二次函數(shù)的性質(zhì)和圖象,得到對(duì)稱軸與所給區(qū)間的關(guān)系.

解答 解:∵函數(shù)y=x2+2ax+1在區(qū)間(-6,6)上單調(diào)遞減,
∴函數(shù)對(duì)稱軸-a≥6
即a≤-6
∴實(shí)數(shù)a的取值范圍是(-∞,-6].

點(diǎn)評(píng) 本題考查二次函數(shù)的性質(zhì)和圖象,需數(shù)形結(jié)合.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.$\frac{1}{0!n!}$+$\frac{1}{1!(n-1)!}$+$\frac{1}{2!(n-2)!}$+…+$\frac{1}{n!0!}$=$\frac{{2}^{n}}{n!}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.在△ABC中,($\frac{{\overrightarrow{AB}}}{{|{\overrightarrow{AB}}|}}$+$\frac{{\overrightarrow{AC}}}{{|{\overrightarrow{AC}}|}}$)•($\overrightarrow{AB}$-$\overrightarrow{AC}$)=0,|${\overrightarrow{AB}$+$\overrightarrow{AC}}$|=3,A∈[$\frac{π}{3}$,$\frac{5π}{6}$],則求$\overrightarrow{AB}$•$\overrightarrow{AC}$的最大值為( 。
A.3B.1C.$\frac{3}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.函數(shù)f(x)=$\sqrt{cosx-1}$的定義域是{x|x=2kπ,k∈z}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.給出下列命題:
(1)命題“在△ABC中,若A=30°,則sinA=$\frac{1}{2}$”的逆否命題為“在△ABC中,若sinA≠$\frac{1}{2}$則A≠30°”
(2)若p∧q為假命題,則p,q均為假命題
(3)?x∈R,sin2x+cos2x=1的否定為真命題
(4)已知命題p:函數(shù)y=ax-1+2(a>0且a≠1)的圖象恒過(guò)一定點(diǎn)A,則點(diǎn)A的坐標(biāo)為(1,2),
其中正確命題的序號(hào)為(1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知a+2b=2,則4a+16b的最小值為( 。
A.2B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.函數(shù)y=x2-4x+1的圖象與x軸交點(diǎn)的橫坐標(biāo)分別為x1,x2,則( 。
A.x1+x2=4B.x1x2=-2C.x1+x2=-4D.x1x2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.函數(shù)f(x)=$\frac{{\sqrt{9-{x^2}}}}{{{{log}_3}(x-1)}}$的定義域?yàn)椋ā 。?table class="qanwser">A.[-3,2)∪(2,3]B.[3,+∞)C.(1,3]D.(1,2)∪(2,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知數(shù)列{an}的通項(xiàng)公式為an=-2n+p,數(shù)列{bn}的通項(xiàng)公式為bn=2n-4,設(shè)cn=$\left\{{\begin{array}{l}{a_n}&{{a_n}≥{b_n}}\\{{b_n}}&{{a_n}<{b_n}}\end{array}}$,若在數(shù)列{cn}中c6<cn(n∈N*,n≠6),則p的取值范圍( 。
A.(11,25)B.(12,22)C.(12,17)D.(14,20)

查看答案和解析>>

同步練習(xí)冊(cè)答案