14.已知i為虛數(shù)單位,則復(fù)數(shù)$\frac{3-4i}{1+i}$的虛部為( 。
A.$-\frac{7}{2}$B.$\frac{7}{2}$C.$-\frac{7}{2}i$D.$\frac{7}{2}i$

分析 利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)得答案.

解答 解:∵$\frac{3-4i}{1+i}$=$\frac{(3-4i)(1-i)}{(1+i)(1-i)}=\frac{-1-7i}{2}$=$-\frac{1}{2}-\frac{7}{2}i$,
∴復(fù)數(shù)$\frac{3-4i}{1+i}$的虛部為$-\frac{7}{2}$.
故選:A.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若實(shí)數(shù)b滿(mǎn)足:(3+bi)(1+i)-2是純虛數(shù),則實(shí)數(shù)b=( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知f(x)=ax2+bx+c,g(x)=-bx.
(1)若a>b>c,a+b+c=0.求怔:f(x)與g(x)圖象必有兩個(gè)交點(diǎn),設(shè)兩交點(diǎn)為A、B,AB在x軸上的射影為A1B1,求|A1B1|的取值范圍.
(2)若a∈N+,f(x)=0有兩個(gè)小于1的不等正根,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若圓x2+y2=b與直線(xiàn)x+y=b相切,則b的值為(  )
A.$\frac{1}{2}$B.1C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)集合M={(m,n)|0<m<2,0<n<3,m,n∈R},則任。╩,n)∈M,關(guān)于x的方程$\frac{m}{4}{x^2}$+nx+m=0有實(shí)根的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若圓x2+y2-4x-4y-10=0上至少有三個(gè)不同點(diǎn)到直線(xiàn)l:y=kx的距離為$2\sqrt{2}$,則直線(xiàn)l的斜率的取值范圍是( 。
A.$(2-\sqrt{3},2+\sqrt{3})$B.$[2-\sqrt{3},2+\sqrt{3}]$C.$(-∞,2-\sqrt{3})∪(2+\sqrt{3},+∞)$D.$(-∞,2-\sqrt{3}]∪[2+\sqrt{3},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知向量$\vec a$=(m,1),$\vec b$=(1,0),$\vec c$=(3,-3),滿(mǎn)足($\vec a$+$\vec b$)∥$\vec c$,則m的值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.己知角φ的終邊經(jīng)過(guò)點(diǎn)P(5,-12),函數(shù)f(x)=sin(ωx+φ)(ω>0),滿(mǎn)足對(duì)任意的x,存在x1,x2使得f(x1)≤f(x)≤f(x2)成立,且|x1-x2|的最小值為$\frac{π}{4}$,則f($\frac{π}{4}$)的值為( 。
A.$\frac{5}{13}$B.-$\frac{5}{13}$C.$\frac{12}{13}$D.-$\frac{12}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.設(shè)函數(shù)f(2x)=1og3(8x2+7),則f(1)=2.

查看答案和解析>>

同步練習(xí)冊(cè)答案