17.設(shè)圓O:x2+y2=$\frac{16}{9}$,直線l:x+3y-8=0,點(diǎn)A∈l,圓O上存在點(diǎn)B且∠OAB=30°(O為坐標(biāo)原點(diǎn)),則點(diǎn)A的縱坐標(biāo)的取值范圍[$\frac{32}{15},\frac{8}{3}$].

分析 依題意∠OAB=30°,則A與B連線與圓相切時(shí)∠OAB最大,設(shè)出A的坐標(biāo),求出|OA|的距離,即可求出A的縱坐標(biāo)的取值范圍.

解答 解:過(guò)點(diǎn)A作圓的切線AB,B為切點(diǎn),設(shè)點(diǎn)A(8-3m,m),
由題意得,A與B連線與圓相切時(shí)∠OAB最大,∴sin∠OAB=$\frac{r}{OA}$=$\frac{\frac{4}{3}}{\sqrt{(8-3m)^{2}+{m}^{2}}}$≥$\frac{1}{2}$,
解得:$\frac{32}{15}$≤m≤$\frac{8}{3}$,
故答案為:[$\frac{32}{15},\frac{8}{3}$].

點(diǎn)評(píng) 本題考查直線與圓的位置關(guān)系,正確確定∠OAB的臨界位置是解題的關(guān)鍵,考查計(jì)算能力,邏輯推理能力,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.如圖,已知|$\overrightarrow{OA}$|=2,|$\overrightarrow{OB}$|=2$\sqrt{3}$,$\overrightarrow{OA}$•$\overrightarrow{OB}$=0點(diǎn)C在線段AB上,∠AOC=30°,用$\overrightarrow{OA}$和$\overrightarrow{OB}$來(lái)表示向量$\overrightarrow{OC}$,則$\overrightarrow{OC}$等于$\frac{3}{4}\overrightarrow{OA}$+$\frac{1}{4}\overrightarrow{OB}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.如圖,在三棱錐P-ABC中,平面PAB⊥平面ABC,PA=PB,AD=DB,則( 。
A.PD?平面ABCB.PD⊥平面ABC
C.PD與平面ABC相交但不垂直D.PD∥平面ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.對(duì)于函數(shù)f(x),若存在x0∈Z,滿足|f(x0)|≤$\frac{1}{4}$,則稱x0為函數(shù)的一個(gè)“近零點(diǎn)”,已知函數(shù)f(x)=ax2+bx+c(a>0)有四個(gè)不同的“近零點(diǎn)”,則a的取值范圍是( 。
A.[$\frac{2}{9}$,$\frac{1}{4}$)B.[$\frac{2}{9}$,$\frac{1}{4}$]C.(0,$\frac{2}{9}$]D.(0,$\frac{1}{4}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=x3+ax2-a2x-1,a>0.
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若關(guān)于x的不等式f(x)≤0在[1,+∞)上有解,求a的取值范圍;
(3)若存在x0,使得x0既是函數(shù)f(x)的零點(diǎn),又是函數(shù)f(x)的極值點(diǎn),請(qǐng)寫(xiě)出此時(shí)a的值.(只需寫(xiě)出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在平面直角坐標(biāo)系xOy中,直線x+y-2=0在矩陣A=$[\begin{array}{l}{1}&{a}\\{1}&{2}\end{array}]$對(duì)應(yīng)的變換作用下得到直線x+y-b=0(a,b∈R),求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.若$\overrightarrow{AP}$=λ$\overrightarrow{AB}$,O為同一平面上任一點(diǎn),試用$\overrightarrow{OA}$,$\overrightarrow{OB}$表示$\overrightarrow{OP}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.投資生產(chǎn)某種產(chǎn)品,并用廣告方式促銷,已知生產(chǎn)這種產(chǎn)品的年固定投資為10萬(wàn)元,每生產(chǎn)1萬(wàn)件產(chǎn)品還需投入18萬(wàn)元,又知年銷量W(萬(wàn)件)與廣告費(fèi)x(萬(wàn)元)之間的函數(shù)關(guān)系為W=$\frac{kx+1}{x+1}$(x≥0),且知投入廣告費(fèi)1萬(wàn)元時(shí),可多銷售2萬(wàn)件產(chǎn)品,預(yù)計(jì)此種產(chǎn)品年銷售收入M(萬(wàn)元)等于年成本(萬(wàn)元)(年成本中不含廣告費(fèi)用)的150%與年廣告費(fèi)用50%的和.
(1)試將年利潤(rùn)y(萬(wàn)元)表示為年廣告費(fèi)x(萬(wàn)元)的函數(shù);
(2)當(dāng)年廣告費(fèi)為多少萬(wàn)元時(shí),年利潤(rùn)最大?最大年利潤(rùn)是多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a1=a(a≠3),an+1=Sn+3n,設(shè)bn=sn-3n,n∈N+
(1)求證:數(shù)列{bn}是等比數(shù)列;
(2)若an+1≥an,n∈N+,求實(shí)數(shù)a的最小值;
(3)若一個(gè)數(shù)列的前n項(xiàng)和為An,若An可以寫(xiě)出tp(t,p∈N+且t>1,p>1)的形式,則稱An為“指數(shù)型和”.
當(dāng)a=4時(shí),給出一個(gè)新數(shù)列{en},其中en=$\left\{\begin{array}{l}{3,n=1}\\{_{n},n≥2}\end{array}$,設(shè)這個(gè)新數(shù)列的前n項(xiàng)和為Cn.,問(wèn){Cn}中的項(xiàng)是否存在“指數(shù)型和”,若存在,求出所有“指數(shù)型和”;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案