14.在框圖中,設(shè)x=2,并在輸入框中輸入n=4;ai=i(i=0,1,2,3,4).則此程序執(zhí)行后輸出的S值為( 。
A.26B.49C.52D.98

分析 執(zhí)行程序框圖,依次寫出每次循環(huán)得到的k,S的值,當(dāng)k=0時不滿足條件k>0,退出循環(huán),輸出S的值為98.

解答 解:模擬執(zhí)行程序框圖,可得
第1次執(zhí)行循環(huán)體,k=3,S=3+4×2=11,滿足條件k>0,
第2次執(zhí)行循環(huán)體,k=2,S=2+11×2=24,滿足條件k>0,
第3次執(zhí)行循環(huán)體,k=1,S=1+24×2=49,滿足條件k>0,
第4次執(zhí)行循環(huán)體,k=0,S=0+49×2=98,不滿足條件k>0,退出循環(huán),輸出S的值為98.
故選:D.

點評 本題考查了循環(huán)結(jié)構(gòu)的程序框圖,根據(jù)框圖的流程判斷算法的功能是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知曲線C:y=$\frac{1}{3}$x3+$\frac{4}{3}$.求:
(1)曲線C上的橫坐標(biāo)為2點切線方程?
(2)上問中的曲線與切線是否存在公共點?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)函數(shù)f(x)=x2+aln(x+1),其中a≠0.
(Ⅰ)當(dāng)a=-1時,求曲線y=f(x)在原點處的切線方程;
(Ⅱ)試討論函數(shù)f(x)極值點的個數(shù);
(Ⅲ)求證:對任意的n∈N*,不等式ln($\frac{n+2}{n+1}$)>$\frac{n}{(n+1)^{3}}$恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知正項數(shù)列{an}滿足a${\;}_{n+1}^{2}$=9an2,若a5a6=8,則a4a7+a5a7=( 。
A.32B.80C.-16或32D.-64或80

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.執(zhí)行如圖所示的程序框圖,如果輸入的t∈[-1,2],則輸出的s屬于( 。
A.[0,1]B.[$\frac{3}{4}$,$\sqrt{2}$]C.[0,$\sqrt{2}$]D.[1,$\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為:ρ=4cosθ.
(Ⅰ)直線l的參數(shù)方程化為極坐標(biāo)方程;
(Ⅱ)求直線l與曲線C交點的極坐標(biāo)(其中ρ≥0,0≤θ≤2π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果是( 。
A.$\frac{19}{20}$B.$\frac{20}{21}$C.$\frac{21}{22}$D.$\frac{22}{23}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知動圓過定點(1,0),且與直線x=-1相切.
(l)求動圓的圓心軌跡C的方程
(2)是否存在直線l,使l過點(0,1),并與軌跡C交于P,Q兩點,使以PQ為直徑的圓過原點?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列各式中正確的是( 。
A.-$\sqrt{x}$=(-x)${\;}^{\frac{1}{2}}$B.x${\;}^{-\frac{1}{5}}$=-$\root{5}{x}$C.(-x)${\;}^{\frac{2}{3}}$=x${\;}^{\frac{2}{3}}$D.x${\;}^{\frac{2}{6}}$=x${\;}^{\frac{1}{3}}$

查看答案和解析>>

同步練習(xí)冊答案