17.已知等比數(shù)列{an}單調(diào)遞減,滿足a1a5=9,a2+a4=10,則數(shù)列{an}的公比q=(  )
A.$-\frac{1}{3}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.3

分析 由等比數(shù)列的性質(zhì)可得:a1a5=a2a4=9,a2+a4=10,且{an}單調(diào)遞減,解出即可得出.

解答 解:由等比數(shù)列的性質(zhì)可得:a1a5=a2a4=9,a2+a4=10,且{an}單調(diào)遞減,
解得:a2=9,a4=1,
可求得$q=\frac{1}{3}$($q=-\frac{1}{3}$舍掉).
故選:B.

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式及其性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.曲線x2=4y在點(diǎn)P(2,1)處的切線斜率k=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若B=$\frac{π}{3}$,b=4,則△ABC的面積的最大值為4$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)變量x,y滿足約束條件$\left\{{\begin{array}{l}{x-y+1≥0}\\{x+y-1≥0}\\{3x-y-3≤0}\end{array}}$,則z=($\frac{1}{2}$)2x-y的最小值為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知向量$\overrightarrow{a}$=($\sqrt{3}$sinx,-1),$\overrightarrow$=(cosx,m),m∈R
(1)若m=tan$\frac{10π}{3}$,且$\overrightarrow{a}$∥$\overrightarrow$,求cos2x-sin2x的值;
(2)將函數(shù)f(x)=2($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow$-2m2-1的圖象向右平移$\frac{π}{6}$個(gè)單位得到函數(shù)g(x)的圖象,若函數(shù)g(x)在[0,$\frac{π}{2}$]上有零點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列說法正確的是( 。
A.若樣本數(shù)據(jù)x1,x2,…,xn的均值x=5,則樣本數(shù)據(jù)2x1+1,2x2+1,…,2xn+1的均值為10
B.相關(guān)系數(shù)r>0,則對(duì)應(yīng)回歸直線方程中$\hat b<0$
C.采用系統(tǒng)抽樣法從某班按學(xué)號(hào)抽取5名同學(xué)參加活動(dòng),學(xué)號(hào)為5,16,27,38,49的同學(xué)均被選出,則該班學(xué)生人數(shù)可能為60
D.在某項(xiàng)測(cè)量中,測(cè)量結(jié)果X服從正態(tài)分布N(1,σ)(σ>0),若X在(0,1)內(nèi)取值范圍概率為0.4,則X在(0,2)內(nèi)取值的概率為0.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如圖,在△ABC中,點(diǎn)D在邊AB上,∠BCD=60°,AC=$\sqrt{7}$,CD=2,BD=2AD,則AD=$\sqrt{3}$或1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某工廠要安排生產(chǎn)Ⅰ,Ⅱ兩種產(chǎn)品,這些產(chǎn)品要在A,B,C,D四種不同的設(shè)備上加工,按工藝規(guī)定,在一天內(nèi),每件產(chǎn)品在各設(shè)備上需要加工的時(shí)間,及各設(shè)備限制最長(zhǎng)使用時(shí)間如下表:
設(shè)備產(chǎn)品Ⅰ每件需要加工時(shí)間產(chǎn)品Ⅱ每件需要加工時(shí)間設(shè)備最長(zhǎng)使用時(shí)間
A2小時(shí)2小時(shí)12小時(shí)
B1小時(shí)2小時(shí)8小時(shí)
C4小時(shí)0小時(shí)16小時(shí)
D0小時(shí)4小時(shí)12小時(shí)
設(shè)計(jì)劃每天生產(chǎn)產(chǎn)品Ⅰ的數(shù)量為x(件),產(chǎn)品Ⅱ的數(shù)量為y(件),
(Ⅰ)用x,y列出滿足設(shè)備限制使用要求的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(Ⅱ)已知產(chǎn)品Ⅰ每件利潤2(萬元)產(chǎn)品Ⅱ每件利潤3(萬元),在滿足設(shè)備限制使用要求的情況下,問該工廠在每天內(nèi)產(chǎn)品Ⅰ,產(chǎn)品Ⅱ各生產(chǎn)多少會(huì)使利潤最大,并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在平行四邊形ABCD中,$\overrightarrow{AB}$=(1,2),$\overrightarrow{AC}$=(-4,2),則該平行四邊形的面積為10.

查看答案和解析>>

同步練習(xí)冊(cè)答案