分析 通過(guò)余弦定理以及基本不等式求出ac的最大值,然后求解三角形的面積的最大值.
解答 解:△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若B=$\frac{π}{3}$,b=4,
可得:16=b2=a2+c2-2accos$\frac{π}{3}$=a2+c2-ac≥2ac-ac=ac,當(dāng)且僅當(dāng)a=c=4時(shí)等號(hào)成立.
∴${S_{△ABC}}=\frac{1}{2}acsinB≤\frac{1}{2}×16×\frac{{\sqrt{3}}}{2}=4\sqrt{3}$,
當(dāng)且僅當(dāng)a=c=4時(shí),${({S_{△ABC}})_{max}}=4\sqrt{3}$.
故答案為:4$\sqrt{3}$.
點(diǎn)評(píng) 本題考查余弦定理的應(yīng)用,基本不等式的應(yīng)用,考查計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 339 | B. | 212 | C. | 190 | D. | 108 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (2,+∞) | B. | [2,+∞) | C. | (-∞,-2)∪(2,+∞) | D. | (-∞,-2]∪[2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $-\frac{1}{3}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2i | B. | i | C. | -i | D. | -2i |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com